To find the molar mass<span> of </span>Ba(NO3)2<span>, determine the </span>molar masses of all the atoms that form it. The Molar mass for Barium nitrate is <span>261.337 g/mol.</span>
<span>1.40 x 10^5 kilograms of calcium oxide
The reaction looks like
SO2 + CaO => CaSO3
First, determine the mass of sulfur in the coal
5.00 x 10^6 * 1.60 x 10^-2 = 8.00 x 10^4
Now lookup the atomic weights of Sulfur, Calcium, and Oxygen.
Sulfur = 32.065
Calcium = 40.078
Oxygen = 15.999
Calculate the molar mass of CaO
CaO = 40.078 + 15.999 = 56.077
Since 1 atom of sulfur makes 1 atom of sulfur dioxide, we don't need the molar mass of sulfur dioxide. We merely need the number of moles of sulfur we're burning. divide the mass of sulfur by the atomic weight.
8.00 x 10^4 / 32.065 = 2.49 x 10^3 moles
Since 1 molecule of sulfur dioxide is reacted with 1 molecule of calcium oxide, just multiply the number of moles needed by the molar mass
2.49 x 10^3 * 56.077 = 1.40 x 10^5
So you need to use 1.40 x 10^5 kilograms of calcium oxide per day to treat the sulfur dioxide generated by burning 5.00 x 10^6 kilograms of coal with 1.60% sulfur.</span>
Answer:
Q = 1461.6 J
Explanation:
Given data:
Mass of ice = 36 g
Initial temperature = -20°C
Final temperature = 0°C
Amount of heat absorbed = ?
Solution:
specific heat capacity of ice is 2.03 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 0°C - (-20°C)
ΔT = 20°C
Q = 36 g ×2.03 j/g.°C×20°C
Q = 1461.6 J
Answer: The coefficient of nitrogen in the given equation is 2.
Explanation: The reaction for the oxidation of methamphentamine with oxygen gas in the body is given by:

By Stoichiometry,
4 moles of methamphentamine reacts with 55 moles of oxygen gas to produce 40 moles of carbon dioxide gas, 30 moles of water and 2 moles of nitrogen gas.
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Hence, the coefficient of nitrogen in the given equation is 2.
Answer:
space
Explanation:
Matter possesses mass and occupies space around it. The space is measured using the property known as volume. Different states of matter occupy spaces in different ways depending on how big, small, rigid, flowing etc. they are. Hence, each state of matter appears a bit differently and they have different volume.