Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have

here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have

So correct answer will be
B. The current increases.
Answer:
u= 29.43 m/s
h=44.14 m
Explanation:
Given that
t= 3 s
We know that acceleration due to gravity ,g = 9.81 m/s² (Downward)
Initial velocity = u
Final velocity ,v= 0 (At maximum height)
We know v = u +a t
v=final velocity
u=initial velocity
a=Acceleration
Now by putting the values in the above equation
0 = u - 9.81 x 3
u= 29.43 m/s
The maximum height h is given as
v² = u ² - 2 g h
0² = 29.43 ² - 2 x 9.81 x h

h=44.14 m
Answer:
f = 3.102 Hz
Explanation:
In this case you have that the required voltage is the maximum induced emf produced by the rotating generator.
In order to calculate the frequency of rotation of the generator that allows one to obtain 12.0V you use the following formula:
(1)
N: turns of the armature = 95
B: magnitude of the magnetic field = 0.800T
A: area of the square armature = (9.0cm)^2 = (0.09m)^2 = 8.1*10^-3 m^2
emf_max = 12.0V
w: angular frequency
you solve the equation (1) for w:

Then, the frequency is:

Answer:

Explanation:
This is an exercise where you need to use the concepts of <em>free fall objects</em>
Our <u>knowable variables</u> are initial high, initial velocity and the acceleration due to gravity:



At the end of the motion, the <u><em>rock hits the ground</em></u> making the final high y=0m

If we <em>evaluate the equation</em>:

This is a classic form of <u><em>Quadratic Formula</em></u>, we can solve it using:




Since the <u><em>time can not be negative</em></u>, the <em>reasonable answer</em> is

Answer:
The atom is now a negative charge
Explanation:
Adding electrons makes things negative.