
if currents go in opposite directions, wires repel
Answer:
F = 0.78[N]
Explanation:
The given values correspond to forces, we must remember or take into account that the forces are vector quantities, that is, they have magnitude and direction. Since we have two X-Y coordinate axes (two-dimensional), we are going to decompose each of the forces into the X & y components.
<u>For F₁</u>
<u />
<u />
<u>For F₂</u>
![F_{x}=2*cos(60)\\F_{x}=1[N]\\F_{y}=-2*sin(60)\\F_{y}=-1.73[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D2%2Acos%2860%29%5C%5CF_%7Bx%7D%3D1%5BN%5D%5C%5CF_%7By%7D%3D-2%2Asin%2860%29%5C%5CF_%7By%7D%3D-1.73%5BN%5D)
<u>For F₃</u>
<u />
<u />
Now we can sum each one of the forces in the given axes:
![F_{x}=1-0.866=0.134[N]\\F_{y}=2-1.73+0.5\\F_{y}=0.77[N]](https://tex.z-dn.net/?f=F_%7Bx%7D%3D1-0.866%3D0.134%5BN%5D%5C%5CF_%7By%7D%3D2-1.73%2B0.5%5C%5CF_%7By%7D%3D0.77%5BN%5D)
Now using the Pythagorean theorem we can find the total force.
![F=\sqrt{(0.134)^{2} +(0.77)^{2}}\\F= 0.78[N]](https://tex.z-dn.net/?f=F%3D%5Csqrt%7B%280.134%29%5E%7B2%7D%20%2B%280.77%29%5E%7B2%7D%7D%5C%5CF%3D%200.78%5BN%5D)
Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
<em>Another key factor that determines a star's colour is its temperature. As stars become hotter, the overall radiated energy increases, and the peak of the curve changes to shorter wavelengths. To put it another way, when a star heats up, the light it produces moves toward the blue end of the spectrum.</em>