The answer is 10 millimeters in one <span>centimeter</span>
Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.
We have a problem with three different state of the ratio of flow velocity to speed of sound.
That is,
a) Mach number to evaluate is 0.2, that mean we have a subsonic state.
The equation here for lift coefficient is,

where
should be expressed in Rad.

So replacing in equation for subsonic state,

b) In this situation we have a transonic state, so we need to use the Prandtl-Glauert rule,

c) For this case we have a supersonic state, so we use that equation,

Answer:
Energy transformation is when energy changes from one form to another – like in a hydroelectric dam that transforms the kinetic energy of water into electrical energy. While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Explanation:
Electrons carry a negative electrical charge & produces a magnetic field as they move through space