Answer: M = 1797.75 kg
Explanation:
given parameters are;
speed V = 26.7 M/S.
momentum P = 4.8×10^4 KGM/S.
What was the mass of the V. A-3?
Momentum P is the product of mass and velocity. That is, P = MV
Substitute V and P into the formula
4.8×10^4 = 26.7 × M
Make M the subject of formula
M = 4.8×10^4/ 26.7
M = 1797.75 kg
Therefore, the mass of the V. A-3 was 1797.75 kg
Answer:
P = 75 W
Explanation:
given,
Distance, L = 8 m
Force,F = 150 N
Time, t = 16 s
Work by the climber
Work done = Force x displacement
W = F. L
W = 150 x 8
W = 1200 J
We know,


P = 75 W
Hence, Power climber is using to climb is equal to 75 W.
<h2>The different forces acting on the ball while its in air</h2>
Amy throws a softball through the air. Applied, drag and gravitational forces are acting on the ball while it’s in the air. The softball experiences force as a result of Amy’s throw. As the ball moves, it experiences from the air it passes through.
It also experiences a downward pull because earth has the property to attract everything which is on the earth towards it. The ball is moving in the air but earth applies force on the ball to get back on the ground. Hence, in this way, gravitational force applies.
There is also a drag force which results due to friction that is present in the air. It resist to move ball in the air and there will also be applied force which is given by a person who throws by applying force.
Answer: 3P/2
Explanation: Let the resistance of the bulbs be R.
now lets consider a Voltage V is supplied to the parallel circuit such that

V=IR
both single bulb( bulb 3) and the two bulbs ( bulb 1 and bulb 2) are provided the same Voltage
( as the voltage remains same in parallel circuit)
we can calculate the Current across both circuits
At Bulb 3
Current 1=V/R
Power1=Voltage * Current1
Power1=V*V/R
Power1=P
At Bulb 1 and Bulb 2
Total Resistance= R+R=2R

Power2=Voltage * Current2

