Answer:
<em>The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.</em>
Explanation:
First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn. At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.
Answer:
A. The frequencies of EMR it emits depend on its temperature
B. It emits only one frequency of EMR
C. It absorbs most of the EMR it receives
Explanation:
- A blackbody is an object that absorbs most of the electromagnetic spectrum of energy that falls on it.
- According to law to reradiates most of the available energy back on top the outer space at an efficiency of 100% and thus radiation may be in the visible range of temperature than are in 1000K.
Producers get energy from the sun to make food from matter.
Let:
Vx = the pulling component of force
Vy = the lifting component of force
Vy:
Sin(n°) = Vy/hypotenuse
hypotenuse * Sin(n°) = Vy
100N*sin(30°) = Vy
50N = Vy
Vx:
Cos(n°) = Vx/hypotenuse
Hypotenuse * cos(n°) = Vx
100N*cos(30°) =Vx
about 86.6N = Vx