The answer is C. The mass of the platinum sample is greater than the mass of the lead sample. As I explained in a previous answer, if they are the same volume, but one is heavier, then it must be more dense. In this particular example, the platinum is more dense than the lead, and therefore has more mass.
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
In mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
<h3>How to explain the information?</h3>
It should be noted that waves simply means the dynamic disturbance of a quantity.
It should be noted that in mechanics, massless strings are often assumed. but this is not a good assumption when discussing waves on strings because the speed of a wave on a massless string would be infinite.
Learn more about waves in:
brainly.com/question/15663649
#SPJ4
Answer:
a
Explanation:
it explains the most, and it is the correct theorem