Answer:
312 g of O₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Next, we shall determine the number of mole of O₂ produced by the reaction of 6.5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Therefore, 6.5 moles of KClO₃ will decompose to produce = (6.5 × 3)/2 = 9.75 moles of O₂.
Finally, we shall determine the mass of 9.75 moles of O₂. This can be obtained as follow:
Mole of O₂ = 9.75 moles
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ =?
Mole = mass / Molar mass
9.75 = Mass of O₂ / 32
Cross multiply
Mass of O₂ = 9.75 × 32
Mass of O₂ = 312 g
Thus, 312 g of O₂ were obtained from the reaction.
Answer:
24.0g H2O
Explanation:
1.33 mol (18.016g/1 mol) = 24.0g H2O
Answer:
pH measures ratio of H+ ions to OH- ions of substances
pOH measures ratio of OH- ions to H+ ions of substances
Explanation:
pH is a scale which measures the ratio of H+ ions to OH- ions to identify how acidic or basic a substance is. This is because acidic substances have high amounts of H+ ions and low amounts of OH- ions, and therefore have a higher ratio of H+ to OH- ions. (And vice versa for bases, low H+ to OH- ratio) On a pH scale, acidic substances have a pH of 0 to 7, water (neutral pH, not acidic nor basic) has a pH of 7, and bases have a pH of 7-14.
pOH is very similar to pH but measures the opposite: the ratio of OH- ions (indicative of a base) to H+ ions (indicative of an acid). Therefore the pH values are reversed on the scale: Basic substances have pOHs below 7, and acidic substances are above 7 on the pOH scale.
Fundamentally, these two scales measure the same thing is the same way, one just measures the ratio one way (H+:OH-), while the other measured them the other way (OH-:H+), resulting in flipped values on the scales:
pH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<---Acidic---> <------Basic------->
pOH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<----Basic----> <-----Acidic------->
Hope this helped!
Answer:
Explanation:
this is the answer hope it helps!(:
Answer: The steepness of a ramp affects it by making it easier or harder.
Explanation: It's a bit situational. If you were going up a steep ramp with a heavy load, it will increase the work necessary, whereas if you were going down a ramp, it would decrease the work necessary. If you need this simply put, think about biking up and down a hill. It would be easier going down than up.