Let the DVD = x
let the CD = y
x+y = cost
Answer:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
Step-by-step explanation:
Use the following rules for exponents:
![a^m*a^n=a^{m+n}\\\\\sqrt[3]{x^3}=x](https://tex.z-dn.net/?f=a%5Em%2Aa%5En%3Da%5E%7Bm%2Bn%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bx%5E3%7D%3Dx)
Simplify 24. Find two factors of 24, one of which should be a perfect cube:

Insert:
![\sqrt[3]{2^3*3a^{10}b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3a%5E%7B10%7Db%5E6%7D)
Now split the exponents. Split 10 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E6%7D)
Split 6 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^3*b^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D)
Now simplify. Any terms with an exponent of 3 will be moved out of the radical (rule #2):
![2\sqrt[3]{3*a^3*a^3*a^3*a^1*b^3*b^3}\\\\\\2*a*a*a\sqrt[3]{3*a^1*b^3*b^3}\\\\\\2*a*a*a*b*b\sqrt[3]{3*a^1}](https://tex.z-dn.net/?f=2%5Csqrt%5B3%5D%7B3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%5Csqrt%5B3%5D%7B3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%2Ab%2Ab%5Csqrt%5B3%5D%7B3%2Aa%5E1%7D)
Simplify:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
:Done
Answer:
14
Step-by-step explanation:
The volume of a 3d rectangular prism is the length*width*height
Therefore your answer is:
3.5*8*0.5 = 14
Tossing a die will have 6 possible outcomes. Those are having sides that are number 1 to 6. The sample space of tossing 3 dice is equal to 6³ which is equal to 216. Now for the calculation of probabilities,
P(two 5s) = (1 x 1 x 5)/216
As we have to have the 5 in the die for two times, then for the 1 time, we can have all other numbers except 5. The answer is 5/216.
P(three 5s) = (1 x 1 x 1)/216 = 1/216
P(one 5 or two 5s) = (1 x 5 x 5)/216 + (1 x 1 x 5)/216 = 5/36
Answer:
A linear function is written as:
y = a*x + b
Where a is the slope and b is the y-intercept.
An exponential equation is written as:
y = A*(r)^x
Where A is the initial quantity and r is the rate of growth.
If a and A are both positives, the similar characteristic of both types of functions is that as x increases, then the value of y will also increase. Then both functions are increasing functions.
They are different in how they increase, while a linear function increases at a constant rate, an exponential function increases slow at the beginning and really fast as x increases, as you can see in the image below where we compare the two types of functions, the green one is the linear function, and the blue one is the exponential function.