Answer:
PE = 44.1 J
Explanation:
Ok, to have the specific data, the first thing we must do is convert from grams to kilograms. Since mass must always be in kilograms (kg)
We have:
- 1 kilograms = 1000 grams.
We convert it using a rule of 3, replacing, simplifying units and solving:
==================================================================
Earth's gravity is known to be 9.8 m/s², so we have:
Data:
- m = 0.3 kg
- g = 9.8 m/s²
- h = 15 m
- PE = ?
Use formula of potencial energy:
Replace and solve:
Since the decimal number, that is, the number after the comma is less than 5, it cannot be rounded, then we have this result.
The potential energy of the volleyball is <u>44.1 Joules.</u>
Greetings.
Answer:
a. 12 m/s² down
Explanation:
Acceleration has units of length per time squared. Acceleration is a vector, so it also has a direction.
Answer:
please give me brainlist and follow
Explanation:
The measuring sensitivity of liquid-in-glass thermometers increases with the amount of liquid in the thermometer. The more liquid there is, the more liquid will expand and rise in the glass tube. For this reason, liquid thermometers have a reservoir to increase the amount of liquid in the thermometer.
The boat traveled from the dock north to the 200-meter marker in the bay in less than 5 minutes, giving the passengers several more hours to fish.
Explanation:
Velocity is a physical quantity that describes the rate of change of displacement with time.
Velocity = 
The quantity differs from speed in that it has both magnitude and direction.
From the options given above:
Displacement: The boat traveled in the north direction from the dock to a 200m mark.
Time taken: approximately less than 5 minutes was the duration of traveling.
This describes the boat's velocity accurately.
Learn more:
Velocity
brainly.com/question/10962624
#learnwithBrainly
Answer:
At the center of the object
At the end of the object farthest away from the ground
At the center of gravity of the object
At end of the object closest to the ground
Explanation: