Answer:
Mass of object (m) = 5.102 kg
Explanation:
Given:
Horizontal Force (F) = 50 N
Find:
Mass of object (m) = ?
Computation:
We know that, acceleration due to gravity (g) = 9.8 m/s²
⇒ Horizontal Force (F) = mg
⇒ 50 N = m (9.8 m/s²)
⇒ Mass of object (m) = 50 / 9.8
⇒ Mass of object (m) = 5.102 kg
Mass of object (m) is 5.1 kg (Approx)
Answer:
the correct result is r = 3.71 10⁸ m
Explanation:
For this exercise we will use the law of universal gravitation
F =
We call the masses of the Earth M, the masses of the moon m and the masses of the rocket m ', let's set a reference system in the center of the Earth, the distance from the Earth to the moon is d = 3.84 108 m
rocket force -Earth
F₁ = - \frac{m' M }{r^2}
rocket force - Moon
F₂ = - \frac{m' m }{(d-r)^2}
in the problem ask for what point the force has the relation
2 F₁ = F₂
let's substitute
2
(d-r) ² = r²
d² - 2rd + r² = \frac{m}{2M} r²
r² (1 -\frac{m}{2M}) - 2rd + d² = 0
Let's solve this quadratic equation to find the distance r, let's call
a = 1 - \frac{m}{2M}
a = 1 - = 1 - 6.15 10⁻³
a = 0.99385
a r² - 2d r + d² = 0
r =
r = [2d ± 2d ] / 2a
r = (1 ± √ (1.65 10⁻³)) = (1 ± 0.04)
r₁ = \frac{d}{a} 1.04
r₂ = \frac{d}{a} 0.96
let's calculate
r₁ = 1.04
r₁ = 401.8 10⁸ m
r₂ = \frac{3.84 10^8}{0.99385} 0.96
r₂ = 3.71 10⁸ m
therefore the correct result is r = 3.71 10⁸ m
Answer:
Yeda
Explanation:
yshyei5rexwu drift hai used thakare I exam rest watu testing reddy
Dependent on what you are measuring and what took you are using. Please be more specific.
Density=mass/volume therefore volume=mass/density; 55g/11.4g/cm^3= 4.82cm^3