Answer:
d) Law of Conservation of Energy
Explanation:
The first law of thermodynamics states that energy can neither be created nor destroyed; energy can only change from one form to another.
For multiple choice you can use an elimination method. If you remember the law then you know it's not A or C because "energy cannot be created nor destroyed", and it's not B because it has nothing to do with mass.
Hope this helps!
°C = (5/9) · (°F-32)
The "wet" thermometer is the upper one ... you can see the wet cloth wrapped around the bulb at the end. It's reading 70° F.
°C = (5/9) · (38) = 21.1° C
The "dry" thermometer is the lower one. It's reading 80° F.
°C = (5/9) · (48) = 26.7° C
So it looks like choice-A is your answer.
Given:
distance from the projector lens to the image, di
projector lens focal length, f
distance from the transparency to the projector lens, do
thin lens equation: 1/f = 1/di + 1/do
do = 4 inches
di = 8 feet
convert feet to inches, for uniformity.
1 foot = 12 inches
8 feet * 12 inches/ft = 96 inches
1/f = 1/96 inches + 1/4 inches
Adding fractions, denominator must be the same.
1/f = (1/96 * 1/1) + (1/4 * 24/24)
1/f = 1/96 + 24/96
1/f = 25/96
to find the value of f, do cross multiplication
1*96 = f * 25
96 = 25f
96/25 = f
3.84 = f
The focal length of the project lens is 3.84 inches
Answer:
Part a)
Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have
since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given
Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have