Answer:
22.27 °C = ΔT
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
Given data:
mass = 28 g
heat absorbed = 58 cal
specific heat of copper = 0.093 cal/g .°C
temperature change =ΔT= ?
Solution:
Q = m × c × ΔT
58 cal = 28 g × 0.093 cal /g.°C × ΔT
58 cal = 2.604 cal.°C × ΔT
58 cal / 2.604 cal .°C = ΔT
22.27 °C = ΔT
1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure. Details about moles can be found below.
<h3>How to calculate number of moles?</h3>
The number of moles of a substance can be calculated using the following formula:
PV = nRT
Where;
- P = pressure
- V = volume
- n = number of moles
- R = gas law constant
- T = temperature
At STP;
- T = 273K
- P = 1 atm
- R = 0.0821 Latm/molK
1 × 35 = n × 0.0821 × 273
35 = 22.41n
n = 35/22.41
n = 1.56mol
Therefore, 1.56 moles of N2 are needed to fill a 35 L tank at standard temperature and pressure.
Learn more about number of moles at: brainly.com/question/14919968
#SPJ1
Non of these bc it makes the most likely
I have provided the steps and solution within the attachment. The pH of the solution would be 12.30, this indicates that the solution is basic, as a higher value of pH indicates presence of more hydroxide ions and less of hydrogen ions in the solution.
<h3>
Answer:</h3>
D. Allotrope
<h3>
Explanation:</h3>
What is allotropy?
- Allotropy refers to the existence of an element in more than one physical forms.
- Allotropes are therefore different forms of an element with different physical properties or chemical arrangements.
What are some examples of allotropes?
- Examples of elements that exhibit allotropy include, sulfur and carbon.
- Allotropes of carbon are diamond and graphite.
- Allotropes of sulfur are monoclinic sulfur and rhombic sulfur.