Answer:
<u>The pendulum bob swing past the mean position because:</u>
When a pendulum's bob is accelerating at its extreme position its velocity is zero. Due to the restoring toque the bob starts to accelerates towards its mean postion. The maximum acceleration of the pendulum's bob is
and the the acceleration decreases as
towards the mean position.
The acceleration at the mean position becomes zero but the velocity remains maximum. Hence the bob continues to move and does not stops.Thus it can summarised as the force decreases ,acceleration decreases and velocity increases at slow rate.
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:

Answer:
i dont understand, can you put it in word form please.
Explanation:
Answer:
Explanation:
The energy of Mass-Spring System the sum of the potential energy of the block plus the kinetic energy of the block:

Where:

There are two cases, the first case is when the spring is compressed to its maximum value, in this case the value of the kinetic energy is zero, since there is no speed, so:

The second case is when the block passes through its equilibrium position, in this case the elastic potential energy is zero since
, so:

Now, let's find the energy of the system when the block is replaced by one whose mass is twice the mass of the original block using the previous data:

Where in this case:

Therefore:
