Answer: 18.27°
Explanation:
Given
Index of refraction of blue light, n(b) = 1.64
Wavelength of blue light, λ(b) = 440 nm
Index of refraction of red light, n(r) = 1.595
Wavelength of red light, λ(r) = 670 nm
Angle of incident, θ = 30°
Angle of refraction of red light is
θ(r) = sin^-1 [(n(a)* sin θ) / n(r)], where n(a) = index of refraction of air = 1
So that,
θ(r) = sin^-1 [(1 * sin 30) / 1.595]
θ(r) = sin^-1 (0.5 / 1.595)
θ(r) = sin^-1 0.3135
θ(r) = 18.27°
I got this answer from the internet
Answer:
Explanation:
Magnetic field due to a long current carrying conductor
μ₀ / 4π x 2i / r ( i = current , r = distance of point from wire )
= 10⁻⁷ x 2 x 120 / 6.4 ( i = 120 A , r = 6.4m )
= 37.5 x 10⁻⁷ T .
= 3. 75 X 10⁻⁶ T .
= 3.75 µT.
b )
The direction of this field will be horizontal hence it will affect magnetic needle.
Answer:
The two answers are in the explanation
Explanation:
Please find the attached files for the solution
<span>An emf is induced when a magnet is in the middle of coil because when a magnetic field is changing then it produces a voltage in the coil, which causes a current to flow. If the coil is changed through a magnetic flux, then a voltage is produced.</span>