Answer:
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
Explanation:
As per Kepler's law of planet motion we know that all planets revolve around the sun in elliptical path in such a way that position of Sun must be at one of the focii of the path
So all planets are in elliptical path always
Position of sun is always at one of the focus
so correct answer will be
1.The Sun is located at one of the foci of the planets' elliptical orbits.
2.The path of the planets around the Sun is elliptical in shape.
<u>Answer:</u>
<em>The amount of water entering the earth through precipitation is equal to the amount of water leaving earth through transpiration.</em>
<u>Explanation:</u>
Rates of precipitation and evaporation vary widely according to regions and seasons. But in a global scale the rates are equal. Thus the total amount of earth’s water maintains its constancy even though there is a continuous change in forms of water.
Evaporation and transpiration are the forms in which Water leaves the earth and it returns to the earth in various forms of precipitation like rain, snow, dew, fog etc. This water then reaches ocean and land. The water that reaches the land flows as surface run off into rivers and water bodies or seep into the ground replenishing the ground water table.
Answer:
Distance is path length covered by particle. When particle moves along half circle, it covers half the circumference therefore distance covered is (2×pi×r)/2 = pi× r. ... Hence displacement is equal to diameter or 2 times the radius of circle.
Plasma...I believe is always a good conductor of electricity. I was tempted to say a solid, but not all solids are the same in composition and that goes for liquid and gas as well.
Hopefully this helped and good luck.
Answer:
Production of GMOs is a multistage process which can be summarized as follows:
1. identification of the gene interest;
2. isolation of the gene of interest;
3. amplifying the gene to produce many copies;
4. associating the gene with an appropriate promoter and poly A sequence and insertion into plasmids;
5. multiplying the plasmid in bacteria and recovering the cloned construct for injection;
6. transference of the construct into the recipient tissue, usually fertilized eggs;
7. integration of gene into recipient genome;
8. expression of gene in recipient genome; and
9. inheritance of gene through further generations.