1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KIM [24]
3 years ago
5

(Signal Property) Under what condition is a discrete-time signal x[????] or a continuous-time signal x(????) periodic? Determine

whether or not the following signals are periodic. If the signal is periodic, determine the fundamental period. Justify your answer.
a. x(t) = 5sin(3t+1)
b. x[ n] = Cos(π/4n)

Engineering
1 answer:
Cloud [144]3 years ago
7 0

Answer:

a. 2x/3

b. 8

Explanation:

fundamental period can be defined to mean that at after every period of 2π radians or 360° the value of graph is repeated. For such functions the fundamental period is the period after which they repeat themselves.

It van also be looked as The fundamental period of cos(θ) is 2π. That is (for example) cos(0) to cos(2π) represents one full period.

Please see attachment for the step by step solution.

You might be interested in
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turb
guajiro [1.7K]

Answer:

\eta_{turbine} = 0.603 = 60.3\%

Explanation:

First, we will find actual properties at given inlet and outlet states by the use of steam tables:

AT INLET:

At 4MPa and 350°C, from the superheated table:

h₁ = 3093.3 KJ/kg

s₁ = 6.5843 KJ/kg.K

AT OUTLET:

At P₂ = 125 KPa and steam is saturated in  vapor state:

h₂ = h_{g\ at\ 125KPa} = 2684.9 KJ/kg

Now, for the isentropic enthalpy, we have:

P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K

Since s₂ is less than s_g and greater than s_f at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

x = \frac{s_2-s_f}{s_{fg}} \\\\x = \frac{6.5843\ KJ/kg.K - 1.3741\ KJ/kg.K}{5.91\ KJ/kg.K}\\\\x = 0.88

Now, we will find h_{2s}(enthalpy at the outlet for the isentropic process):

h_{2s} = h_{f\ at\ 125KPa}+xh_{fg\ at\ 125KPa}\\\\h_{2s} = 444.36\ KJ/kg + (0.88)(2240.6\ KJ/kg)\\h_{2s} = 2416.088\ KJ/kg

Now, the isentropic efficiency of the turbine can be given as follows:

\eta_{turbine} = \frac{h_1-h_2}{h_1-h_{2s}}\\\\\eta_{turbine} = \frac{3093.3\ KJ/kg-2684.9\ KJ/kg}{3093.3\ KJ/kg-2416.088\ KJ/kg}\\\\\eta_{turbine} = \frac{408.4\ KJ/kg}{677.212\ KJ/kg}\\\\\eta_{turbine} = 0.603 = 60.3\%

3 0
3 years ago
A tensile test was operated to test some important mechanical properties. The specimen has a gage length = 1.8 in and diameter =
oee [108]

Answer:

a) 60000 psi

b) 1.11*10^6 psi

c) 112000 psi

d) 30.5%

e) 30%

Explanation:

The yield strength is the load applied when yielding behind divided by the section.

yield strength = Fyield / A

A = π/4 * D^2

A = 0.5 in^2

ys = Fy * A

y2 = 30000 * 0.5 = 60000 psi

The modulus of elasticity (E) is a material property that is related to the object property of stiffness (k).

k = E * L0 / A

And the stiffness is related to change of length:

Δx = F / k

Then:

Δx = F * A / (E * L0)

E = F * A / (Δx * L0)

When yielding began (approximately the end of the proportional peroid) the force was of 30000 lb and the change of length was

Δx = L - L0 = 1.8075 - 1.8 = 0.0075

Then:

E = 30000 * 0.5 / (0.0075 * 1.8) = 1.11*10^6 psi

Tensile strength is the strees at which the material breaks.

The maximum load was 56050 lb, so:

ts = 56050 / 0.5 = 112000 psi

The percent elongation is calculated as:

e = 100 * (L / L0)

e = 100 * (2.35 / 1.8 - 1) = 30.5 %

If it necked with and area of 0.35 in^2 the precent reduction in area was:

100 * (1 - A / A0)

100 * (1 - 0.35 / 0.5) = 30%

5 0
3 years ago
A helical compression spring is made with oil-tempered wire with wire diameter of 0.2 in, mean coil diameter of 2 in, a total of
Naya [18.7K]

Answer:

a. Solid length Ls = 2.6 in

b. Force necessary for deflection Fs = 67.2Ibf

Factor of safety FOS = 2.04

Explanation:

Given details

Oil-tempered wire,

d = 0.2 in,

D = 2 in,

n = 12 coils,

Lo = 5 in

(a) Find the solid length

Ls = d (n + 1)

= 0.2(12 + 1) = 2.6 in Ans

(b) Find the force necessary to deflect the spring to its solid length.

N = n - 2 = 12 - 2 = 10 coils

Take G = 11.2 Mpsi

K = (d^4*G)/(8D^3N)

K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in

Fs = k*Ys = k (Lo - Ls )

= 28(5 - 2.6) = 67.2 lbf Ans.

c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.

For C = D/d = 2/0.2 = 10

Kb = (4C + 2)/(4C - 3)

= (4*10 + 2)/(4*10 - 3) = 1.135

Tau ts = Kb {(8FD)/(Πd^3)}

= 1.135 {(8*67.2*2)/(Π*2^3)}

= 48.56 * 10^6 psi

Let m = 0.187,

A = 147 kpsi.inm^3

Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi

Ssy = 0.50 Sut

= 0.50(198.6) = 99.3 kpsi

FOS = Ssy/ts

= 99.3/48.56 = 2.04 Ans.

7 0
3 years ago
Two technicians are discussing cylinder- testing. Technician A says that when testing the power level of a specific cylinder usi
konstantin123 [22]

Answer:

The answer is "Both Technician A and Technician B".

Explanation:

The cylinder Testing is intended to assess locomotive inconsistency in CNS rodents, for example, whenever the animal moves within a transparent plastic tube, its preliminary activity is registered as it rises against the stadium wall.

In the given question both technicians are correct because both are reliable ways to check cylinders and the influence of the belief if every pathway has many more advantages than each other.

6 0
3 years ago
What is a robot’s work envelope?
Dmitry_Shevchenko [17]

Answer:

B

Explanation:

A robot's work envelope is its range of movement. It is the shape created when a manipulator reaches forward, backward, up and down. These distances are determined by the length of a robot's arm and the design of its axes. ... A robot can only perform within the confines of this work envelope.

3 0
3 years ago
Other questions:
  • What does WCS stand for? A. Western CAD System B. Worldwide Coordinate Sectors C. World Coordinate System D. Wrong CAD Settings
    10·1 answer
  • Convection is a function of temperature to the fourth power. a)-True b)-False
    9·1 answer
  • 3. Write down the total thermal resistance for a double-pipe heat exchanger. Show how to convert from total resistance to an ove
    12·2 answers
  • Is it acceptable to mix used absorbents.
    8·2 answers
  • What is flow energy? Do fluids at rest possess any flow energy?
    13·1 answer
  • Can a real refrigerator have higher COP than the COP of the Carnot refrigerator?
    7·2 answers
  • It is the tool used to measure the amount of electric current​
    6·2 answers
  • Name the ferrous metal that most workshop tools are made from??
    12·2 answers
  • Pointttttttttttttssssssssssss
    12·1 answer
  • A design that either partially or wholly integrates the bodywork
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!