1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
6

(,,)=^3−^3+^3, where is the sphere ^2 + ^2 + ^2=^

Engineering
1 answer:
miv72 [106K]3 years ago
7 0
I have no clue hahahaha
You might be interested in
Which apparatus is likely to carry a ladder? (There may be more than one answer.)
Aloiza [94]
B and D
hope this helped
4 0
3 years ago
4. The instant the ignition switch is turned to the start position,
geniusboy [140]

Answer:

D. Both pull-in and hold-in windings are energized.

Explanation:

The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.

The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.

4 0
3 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
4 years ago
A thin-walled cylinder of average radius 50 mm, and wall thickness 1.0 mm is of length 500 mm, and is built into a wall at one e
kotykmax [81]

Answer:

0

Explanation:

7 0
3 years ago
Express the following quantities to the nearest standard prefix using no more than three digits.(a) 20,000,000 Hz(b) 1025 W(c) 0
bija089 [108]

Answer:

(a) 20 MHz

(b) 1.025 KW

(c) 3.33 ns

(d) 33 pF

Explanation:

(a) 20,000,000 Hz = 20 x 10^6 Hz = 20 Mega Hz = <u>20 MHz</u>

(b) 1025 W = 1.025 x 10^3 W = 1.025 Kilo W = <u>1.025 KW</u>

(c) 0.333 x 10^(-8) s = 3.33 x 10^(-9) s = 3.33 nano s = <u>3.33 ns</u>

(d) 33 x10^(-12)F = 33 pico F = <u>33 pF</u>

8 0
4 years ago
Other questions:
  • A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of ins
    14·2 answers
  • WILL MARK BRAINLEST PLEASE HELP
    10·1 answer
  • Are ocean currents always cold
    10·1 answer
  • Which career related to architecture deals with the planning of entire cities and focuses on designing and arranging buildings,
    9·2 answers
  • Two technicians are discussing solder wire repair. Technician A says that electrical tape can be used to cover the joint. Techni
    10·1 answer
  • The fouling on the heat exchanger surfaces causes additional thermal resistance, thus decreases the heat transfer rate. a)- True
    11·1 answer
  • Question 10 of 25
    6·2 answers
  • PLEASE HELP ME RIGHT NOW!!
    11·1 answer
  • QUESTION:
    13·1 answer
  • Select the correct answer.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!