1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
6

Block A is released from rest and slides down the frictionless ramp to the loop. The maximum height h of the loop is the same as

the initial height of the block. Will A make it completely around the loop without losing contact with the track?

Engineering
1 answer:
Zolol [24]3 years ago
4 0

Answer:No

Explanation:

Given

Block A is at height h and released from rest

Initial Energy possessed by block A is equal to Potential energy of Block which is given by

E_i=mgh

where m=mass of block

After releasing the block, block first reaches to the bottom of the circle and then uses this energy to reach a top point of the loop.

But as soon as block reaches the top point of the loop it acquires the energy which is equal to Initial energy i.e. all the energy is stored in the form of potential energy and there is no kinetic energy so the block will not able to move further and fall from the top point.

You might be interested in
An iron-carbon alloy initially containing 0.286 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1200°
Fantom [35]

Answer:

Explanation:

Given data:

initial construction co = 0.286 wt %

concentration at surface position cs = 0 wt %

carbon concentration cx = 0.215 wt%

time = 7 hr

D =  7.5 \times 10^{-11} m^2/s

for 0.225% carbon concentration following formula is used

\frac{cx -co}{cs -co} = 1 - erf(\frac{x}{2\sqrt{DT}})

where, erf stand for error function

\frac{cx -co}{cs -co} = \frac{0.215 -0.286}{0 -0.286} =0.248

0.248 = 1 - erf(\frac{x}{2\sqrt{DT}})

erf(\frac{x}{2\sqrt{DT}}) = 1 - 0.248

erf(\frac{x}{2\sqrt{DT}}) = 0.751

from the table erf(Z) value = 0.751 lie between (z) = 0.80 and z = 0.85 so by inteerpolation we have z = 0.815

from given table

\frac{x}{2\sqrt{DT}} = 0.815

x = 2\times 0.815 \times \sqrt{7.5 \times 10^{-11}\times (7\times 3600)

x = 2.39\times 10^{-3} m

x = 0.002395 mm

8 0
3 years ago
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the
ololo11 [35]

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

4 0
2 years ago
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
2 years ago
To compute the energy used by a motor, multiply the power that it draws by the time of operation. Con- sider a motor that draws
ehidna [41]

Answer:

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb

Explanation:

To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.

Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=(12.5hp)(\frac{16h}{day} )(\frac{5 days}{week} )(\frac{52week}{year} )\\

E=52000Hp.h

E=52000Hp.h(\frac{744.71Wh}{Hp.h} )\\

E=38724920Wh

E=52000Hph(\frac{1977378.4  ft lb}{1Hph}

E=1.028x10^11 ftlb

3 0
3 years ago
I need a thesis statement about Engineers as Leaders.
algol [13]

Answer:

Engineers are a very beneficial contribution in which offers great solutions to national problems.

5 0
2 years ago
Other questions:
  • If the value of the feedback resistor in the filter is changed but the value of the resistor in the forward path is unchanged, w
    14·1 answer
  • שאלה 2 - כתיבת קוד (35 נק')
    12·1 answer
  • You start your car and begin to pull out of a parking space. After leaving the space, You notice that the brake light on your in
    12·1 answer
  • When testing a compressor with an ohm meter, a technician read 2 ohms between the start terminal and the case of the compressor.
    5·1 answer
  • For the same cross-sectional area, which column provides the higher buckling load: a circular bar or a circular tube?
    15·1 answer
  • Consider a sphere made of stainless steel with diameter of 25 cm. It is heated to temperature of 300°C for some chemical tests.
    12·1 answer
  • An atom that gained an electron is called​
    10·2 answers
  • How to change a fuel fiter
    12·1 answer
  • Which explanation best summarizes what went wrong during Paul’s cost analysis?
    14·1 answer
  • Technician a s ays a shorted circuit can generate excessive heat. technician b says a shorted circuit will cause the circuit pro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!