Answer:
Both
A. Low tides are lowest at both full moon and new moon.
B. High tides are highest at both full moon and new moon.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the moon across to the Earth sphere.
Since gravity variate with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, see the image below, point A is closer to the moon than point b and at the same time the center of mass of the Earth will feel more attracted to the moon than point B. Therefore, that creates a tidal bulge in point A and point B.
On the other hand, a full moon it gets when Sun, the Earth and the moon are in a line and the moon is reflecting the sunlight.
When the Moon is between the Earth and the Sun it will be illuminated in its back, so it is not possible to see it from the Earth (that is called new moon).
In those two cases mentioned above, the Sun tidal force contributes to the tidal force of the moon over the earth making high tides higher and low tides lower.
(a) The maximum potential difference across the resistor is 339.41 V.
(b) The maximum current through the resistor is 0.23 A.
(c) The rms current through the resistor is 0.16 A.
(d) The average power dissipated by the resistor is 38.4 W.
<h3>Maximum potential difference</h3>
Vrms = 0.7071V₀
where;
V₀ = Vrms/0.7071
V₀ = 240/0.7071
V₀ = 339.41 V
<h3> rms current through the resistor </h3>
I(rms) = V(rms)/R
I(rms) = (240)/(1,540)
I(rms) = 0.16 A
<h3>maximum current through the resistor </h3>
I₀ = I(rms)/0.7071
I₀ = (0.16)/0.7071
I₀ = 0.23 A
<h3> Average power dissipated by the resistor</h3>
P = I(rms) x V(rms)
P = 0.16 x 240
P = 38.4 W
Learn more about maximum current here: brainly.com/question/14562756
#SPJ1
Answer:
In collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Explanation:
In a collision two objects, there is a force exerted on both objects that causes an acceleration of both objects. These forces that act on both objects are equal in magnitude and opposite in direction.
Thus, in collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Answer:
Explanation:
velocity v = Δx/Δt
Δx is the change in displacement
Δt is the change in time
Δx = vΔt
Given v = 1100ft/s
Δt = t2-t1
Δt = 13-5.6
Δt = 7.4s
Δx = 1100*7.4
Δx = 8,140ft
Hence the distance of the airplane from the person at the instant of the bolt is 8,140ft
Since the air moves at constant speed, it means the speed is not chnaging hence the velocity of the air v is the same as the constant speed.
velocity of the airplane vp = Δx/Δt
Δx = 8,140ft
Δt = t2+t1
Δt = 13+5.6
Δt = 18.6s
Substituting the given values into the formula vp = Δx/Δt
vp = 8,140/18.6
vp = 437.63m/s
Hence the velocity of the airplane is 437.63m/s