Answer:
The ratio of their orbital speeds are 5:4.
Explanation:
Given that,
Mass of A = 5 m
Mass of B = 7 m
Radius of A = 4 r
Radius of B = 7 r
The orbital speed of satellite A,
......(I)
The orbital speed of satellite B,
......(I)
We need to calculate the ratio of their orbital speeds
Using equation (I) and (II)

Put the value into the formula


Hence, The ratio of their orbital speeds are 5:4.
Answer:
Atomic mass is defined as the number of protons and neutrons in an atom
Answer:
<em>The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.</em>
<em></em>
Explanation:
At first, the magnet fall towards the coils; inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.
This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters
