Answer and Explanation:
The options aren't listed in your question, but here are some units that are regularly and normally used (in the classroom and in the outside world):
(The SI unit of distance and displacement is the meter. The SI unit of time is the second.)
<u>Meters per Second (m/s)</u>
kilometers per hour (km/hr)
kilometers per second (km/sec)
To find the average speed, you do distance divided by time.
To find the average velocity, you do the final position minus the initial position, divided by the final time minus the initial time.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
<em><u></u></em>
<em><u>I hope this helps!</u></em>
Answer:
18 liters
Explanation:
Step 1: Figure out what the formula and what you are dealing with.
- 25 degrees celcius is constant, so it is irrelevant for the mathmatical part.
- P1 = 1 atm
- P2 = 20 atm
- V1 = 360 liters
- V2 = trying to find
Note: remember the original equation is V1/P1 = V2/P2
- Step 2: Rearrange the equation to fit this problem, you should get...
V2 = V1 x P1 / P2
- Step 3: Fill our own numbers in. You should get...
360 L x 1 atm / 20 atm = 18 Liters (do the math)
- Answer = 18 Liters
- Remember to just follow the formula and fill it in with your own numbers.
If you need any more help comment below. I am happy to help anytime.
Answer:
your answer is 12 hope it's correct answer
Answer:
(119 g H2O) / (18.01532 g H2O/mol) x (1 mol Pb / 2 mol H2O) x (207.21 g Pb/mol) = 684 g Pb
Explanation:
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>