Answer:
15.7 m
Explanation:
The range (horizontal distance) of the projectile is determined only by its horizontal motion.
The horizontal motion is a motion with constant speed, which is equal to the initial horizontal velocity of the object:

where
v = 12.0 m/s is the initial velocity
is the angle between the direction of v and the horizontal
Substituting,

We know that the projectile hits the ground in a time of
t = 2.08 s
so the horizontal distance covered is

"Accuracy" would be the best option from the list regarding the property of a measurement that is best estimated from the percent error, since the higher the error is the lower the accuracy.
Explanation:
When taking scientific measurements, it's vital to be each correct and precise. Accuracy represents however shut a mensuration involves its true price. This can be vital as a result of unhealthy instrumentality, poor processing or human error will result in inaccurate results that aren't terribly getting ready to the reality.
The best way in handling in this situation is that in order for the astronaut to be able to get back to the shuttle is that he or she should take an object from his or her tool belt and to be thrown out away from the shuttle. This will allow her to weight lightly and safely return to the shuttle and would be easier for his or her to do so.
Answer:
See attached file :)
Hope this helps!
All the love, Ya boi Fraser :)
Answer:
a' =4.15 m/s²
Explanation:
Given that
m= 3.2 kg
F₁ = 1.9 i −1.9 j N
F₂=3.8 i −10.1 j N
From second law of Newton's
F(net) = m a
F₁ + F₂ = m x a
1.9 i −1.9 j + 3.8 i −10.1 j = 3.2 a
a = 1.78 i - 3.75 j m/s²
The resultant acceleration a'

a' =4.15 m/s²