<span>NO2 weighs 46.005 grams per mol. There are 6.02x10^23 molecules in a mol. In the given sample of 189.5 grams, there are 4.12 mols. This means that there are 2.48x10^24 molecules of NO2 in the given sample.</span>
PH + pOH = 14
12.52 + pOH = 14
pOH = 14 - 12.52
pOH = 1.48
[OH⁻] = 10^ -pOH
[OH⁻] = 10 ^- 1.48
[OH⁻] = 0.033 M
Answer:
A) he equilibrium concentration of PH3 = 0.0432M
B) he equilibrium concentration of BCl3 = 0.0432M
C) what is the minimum mass of PH3BCl3(s) that must be added to the flask to achieve equilibrium = 1.69g
Explanation:
The detailed steps and appropriate calculation is as shown in the attached file.
The answer is molar mass to MO2SO4
The molecular weight of unknown gas : 23.46 g/mol
<h3>Further explanation</h3>
Given
A vessel contains 10% of oxygen and 90% of an unknown gas.
diffuses rate of mixed gas = 86 s
diffuses rate of O₂ = 75 s
Required
the molecular weight of unknown gas (M)
Solution
The molecular weight of mixed gas :(M O₂=32 g/mol)

Graham's Law :
