Answer:
Explanation:
Hello!
To solve this problem you must follow the following steps, which are fully registered in the attached image.
1. Draw the complete outline of the problem.
2. Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties.
3. Use temodynamic tables to find the density of water in state 1, by means of temperature and quality, with this value and volume we can find the mass.
3. Use thermodynamic tables to find the internal energy in state 1 and two using temperature and quality.
4. uses the first law of thermodynamics that states that the energy in a system is always conserved, replaces the previously found values and finds the work done.
5. draw the pV diagram using the 300F isothermal line
Answer:
47.91 sec
Explanation:
it is given that 
at t=0 velocity =0 ( as it is given that it is starting from rest )
we have to find time at which velocity will be 3.3 
we know that 

integrating both side
---------------eqn 1
at t=o it is given that v=0 putting these value in eqn 1 c=0
so 
when v= 3.3 
t=
=47.91 sec
Answer:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
Explanation:
We can compute the diameter of the tree T by a pruning procedure, starting at the leaves (external nodes).
- Remove all leaves of T. Let the remaining tree be T1.
-
Remove all leaves of T1. Let the remaining tree be T2.
-
Repeat the "remove" operation as follows: Remove all leaves of Ti. Let remaining tree be Ti+1.
-
When the remaining tree has only one node or two nodes, stop! Suppose now the remaining tree is Tk.
-
If Tk has only one node, that is the center of T. The diameter of T is 2k.
-
If Tk has two nodes, either can be the center of T. The diameter of T is 2k+1.
Diverging Diamond Interchange