Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:
24.72 kwh
Explanation:
Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.
Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain
PE=(108*9.81*84)/3600=24.72 kWh
Answer:
The coefficient of thermal expansion tells us how much a material can expand due to heat.
Explanation:
Thermal expansion occurs when a material is subjected to heat and changes it's shape, area and volume as a result of that heat. How much that material changes is dependent on it's coefficient of thermal expansion.
Different materials have different coefficients of thermal expansion (i.e. It is a material property and differs from one material to the next). It is important to understand how materials behave when heated, especially for engineering applications when a change in dimension might pose a problem or risk (eg. building large structures).