1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
podryga [215]
3 years ago
9

What is the ideal cooling system for low horsepower motor? For example1hp motor

Engineering
1 answer:
Papessa [141]3 years ago
7 0

Answer:

Air cooling.

Explanation:

Low power motors are supposed to be low cost, and they dissipate little heat. Therefore a low cost solution is ideal.

Air cooling can be achieved with very little cost. Fins can be added to a cast motor casing and a fan can be places on the shaft to use a small amount of the motor power to move air to cool it.

You might be interested in
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of Syt = 60 kpsi and Syc = 75 kpsi. Using
kow [346]

Answer:

2.135

Explanation:

Lets make use of these variables

Ox 16.5 kpsi, and Oy --14,5 kpsi

To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.

Please refer to attachment for the step by step solution.

4 0
3 years ago
a circular pile, 19 m long is driven into a homogeneous sand layer. The piles width is 0.5 m. The standard penetration resistanc
Elena L [17]

Answer:

Point force (Qp) = 704 kn/m²

Explanation:

Given:

length = 19 m

Width = 0.5 m

fs = 4

Vicinity of the pile = 25

Find:

Point force (Qp)

Computation:

Point force (Qp) = fs²(l+v)

Point force (Qp) = 4²(25+19)

Point force (Qp) = 16(44)

Point force (Qp) = 704 kn/m²

5 0
2 years ago
In a tensile test on a steel specimen, true strain = 0.12 at a stress of 250 MPa. When true stress = 350 MPa, true strain = 0.26
scZoUnD [109]

Answer:

The strength coefficient is 625 and the strain-hardening exponent is 0.435

Explanation:

Given the true strain is 0.12 at 250 MPa stress.

Also, at 350 MPa the strain is 0.26.

We need to find  (K) and the (n).

\sigma =K\epsilon^n

We will plug the values in the formula.

250=K\times (0.12)^n\\350=K\times (0.26)^n

We will solve these equation.

K=\frac{250}{(0.12)^n} plug this value in 350=K\times (0.26)^n

350=\frac{250}{(0.12)^n}\times (0.26)^n\\ \\\frac{350}{250}=\frac{(0.26)^n}{(0.12)^n}\\  \\1.4=(2.17)^n

Taking a natural log both sides we get.

ln(1.4)=ln(2.17)^n\\ln(1.4)=n\times ln(2.17)\\n=\frac{ln(1.4)}{ln(2.17)}\\ n=0.435

Now, we will find value of K

K=\frac{250}{(0.12)^n}

K=\frac{250}{(0.12)^{0.435}}\\ \\K=\frac{250}{0.40}\\\\K=625

So, the strength coefficient is 625 and the strain-hardening exponent is 0.435.

5 0
3 years ago
A westbound section of freeway currently has three 12-ft wide lanes, a 6-ft right shoulder, and no ramps within 3 miles upstream
Tresset [83]

Answer:

•Estimated density = 39.685Pc/mi/en

•Level of service, LOS frequency = LOSC

Explanation:

We are given:

•Freeway current lane width,B = 12ft

• freeway current shoulder width,b = 6ft

• percentage of heavy vehicle, Ptb = 10℅

• peak hour factor, PHF = 0.9

Let's consider,

•Number of lanes N = 4

• flow of traffic V = 7500vph

• percentage of Rv = 0, therefore the freeflow speed in freeway FFS = 70mph

• cars equivalent for recreational purpose Er= 2

•cars to be used for trucks and busses Etb= 2.5

Let's first calculate for the heavy adjustment factor.

We have:

F_H_v = \frac{1}{1+P_t_b(E_t_b-1)+Pr(Er-1)}

Substituting figures in the equation we have:

= \frac{1}{1+0.1(2.5-1)+0(2-1)}

= 0.75

Let's now calculate equivalent flow rate of the car using:

Vp = \frac{V}{(P_H_F)*N)*(F_H_v)*(F_p)}

= \frac{7500}{0.9*4*0.75*1}

= 2777.7 pc/h/en

Calculating for traffic density, we have:

D = \frac{Vp}{FFS}

D = \frac{2777.7}{70}

D = 39.685 Pc/mi/en

Using the table for LOS criteria of basic frequency segment, the level of service LOS of frequency is LOSC

4 0
3 years ago
Race car is accelerating and has a velocity of 10 m/s @ t=0. It completes a lap on a circular track of 400 m in 14 seconds. Calc
wariber [46]

Answer:

component of acceleration are a = 3.37 m/s² and ar = 22.74 m/s²

magnitude of acceleration is  22.98 m/s²

Explanation:

given data

velocity = 10 m/s

initial time to = 0

distance s = 400 m

time t = 14 s

to find out

components and magnitude of acceleration after the car has travelled 200 m

solution

first we find the radius of circular track that is

we know  distance S = 2πR

400 = 2πR

R = 63.66 m

and tangential acceleration is

S = ut + 0.5 ×at²

here u is initial speed and t is time and S is distance

400 = 10 × 14  + 0.5 ×a (14)²

a = 3.37 m/s²

and here tangential acceleration is constant

so  velocity at distance 200 m

v² - u² = 2 a S

v² = 10² + 2 ( 3.37) 200

v = 38.05 m/s

so radial acceleration at distance 200 m

ar = \frac{v^2}{R}

ar = \frac{38.05^2}{63.66}

ar = 22.74 m/s²

so magnitude of total acceleration is

A = \sqrt{a^2 + ar^2}

A = \sqrt{3.37^2 + 22.74^2}

A = 22.98 m/s²

so magnitude of acceleration is  22.98 m/s²

8 0
3 years ago
Other questions:
  • A BS of 5.43 ft is taken on a level rod at a 120-ft distance, and a FS of 8.76 ft is taken on the rod held 1,100 feet away.(a) W
    6·1 answer
  • Calculate the differential pressure in kPa across the hatch of a submarine 320m below the surface of the sea. Assume the atmosph
    6·1 answer
  • What happens in double transverse wishbone front suspension when brakes are applied.
    8·1 answer
  • if you had 100 B size sheets and you cut them into A size sheets, how many sheets of A size paper would you have
    14·1 answer
  • If they opened up the International Space Station to tourism, would you go? Why? answer in 2 sentences
    13·2 answers
  • Imagine a cantilever beam fixed at one end with a mass = m and a length = L. If this beam is subject to an inertial force and a
    6·1 answer
  • List six possible valve defects that should be included in the inspection of a used valve?
    7·1 answer
  • Match the scenario to the problem-solving step it represents.
    7·1 answer
  • Reverse Engineering: Structural Analysis
    14·1 answer
  • Help please i will give brainlist
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!