Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
As we know that the during the charging process of the battery the terminal voltage of the cell is given as



Part b)
Thermal energy dissipated in the battery is due to its internal resistance
so it is given as

here we have


Part c)
rate of energy conversion in the in the battery is given as



Part d)
percentage of the power conversion is given as



Answer:
3.78 m/s
Explanation:
Recall that the formula for average speed is given by
Speed = Distance ÷ Time taken
Where,
Speed = we are asked to find this
Distance = given as 340m
Time taken = 1.5 min = 1.5 x 60 = 90 seconds
Substituting the values into the equation:
Speed = Distance ÷ Time taken
= 340 meters ÷ 90 seconds
= 3.777777 m/s
= 3.78 m/s (round to nearest hundredth)
By unplugging unused devices, by turning off any unused lights, and by switching your lightbulbs to something more energy efficient.
By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>m</em> <em>a</em>
∑ <em>F</em> = (2.00 kg) (8 <em>i</em> + 6 <em>j</em> ) m/s^2 = (16.0 <em>i</em> + 12.0 <em>j</em> ) N
Let <em>f</em> be the unknown force. Then
∑ <em>F</em> = (30.0 <em>i</em> + 16 <em>j</em> ) N + (-12.0 <em>i</em> + 8.0 <em>j</em> ) N + <em>f</em>
=> <em>f</em> = (-2.0 <em>i</em> - 12.0 <em>j</em> ) N