Answer:
When the solar system settled into its current layout about 4.5 billion years ago, Earth formed when gravity pulled swirling gas and dust in to become the third planet from the Sun. Like its fellow terrestrial planets, Earth has a central core, a rocky mantle and a solid crust.
Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:
where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:
Answer:
I can use a dichotomous key. It helps me classify objects by sorting it out with "yes" and "no" questions.
or
I can use a Punnett Square. It helps me classify what genes the offspring will receive simply by figuring out the recessive and dominant genes as well as the hetzygous and homzygous.
Now give an example of which ever chart you choose by drawing it if that is required. For the Punnett Square label each of the squares Top right Hetzygous, top left dominant, bottom left recessive, bot-tom right homzygous. And for the dichotomous key put a 5-7 length branch showing the animals that have fur, can breathe under water, what cannot or doesn't have those traits. or something similar
Hopefully this helps :)
The energy that is
essential to break one C-H bond is 414 kJ/mol. Since, there are four C-H bonds
in CH4, the energy Δ HCH4 for
breaking all the bonds is calculated as Δ HCH4 = 4 x bond energy of C-H bond. By
multiplying the 4 with the 414 kJ/mol you can get the answer of 1656 kJ/mol CH4
molecules.