You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.
Answer:
24.309 g/mol
Explanation:
To get the atomic mass, all we have to do is calculate with the masses of the three isotope, the real quantity present, taking account of the percent and then, do a sum of these three values. Like a pondered media.
For the first isotope:
23.99 * (78.99/100) = 18.95 g/mol
For the second isotope:
24.99 * (10/100) = 2.499 g/mol
For the last isotope:
25.98 * (11.01/100) = 2.86 g/mol
Now, let's sum all three together
AW = 18.95 + 2.499 + 2.86
AW = 24.309 g/mol
The answer is (2) KNO3. This depends on the solubility of these four compounds at 10℃. For NaCl, it is 35.8 g, For NaNO3, 80.8 g. KCl, 31.2 g. KNO3, 21.9g. So only KNO3 is less than 25.0 g.
Scientists can measure the height in
different units but problem could arise when they compare all the measurements.
That is the reason there is standard units for measurements.
<span>There may be error arises when an
American scientist is measuring the height of an object in inches and other Australian
scientist is measuring the height of same object in meters. Their data cannot
be compared because they are using different units to measure height.</span>