The gravitational force <em>F</em> between two masses <em>M</em> and <em>m</em> a distance <em>r</em> apart is
<em>F</em> = <em>G M m</em> / <em>r</em> ²
Decrease the distance by a factor of 7 by replacing <em>r</em> with <em>r</em> / 7, and decrease both masses by a factor of 8 by replacing <em>M</em> and <em>m</em> with <em>M</em> / 8 and <em>m</em> / 8, respectively. Then the new force <em>F*</em> is
<em>F*</em> = <em>G </em>(<em>M</em> / 8) (<em>m</em> / 8) / (<em>r</em> / 7)²
<em>F*</em> = (1/64 × <em>G M m</em>) / (1/49 × <em>r</em> ²)
<em>F*</em> = 49/64 × <em>G M m</em> / <em>r</em> ²
In other words, the new force is scaled down by a factor of 49/64 ≈ 0.7656, so the new force has magnitude approx. 76.56 N.
Answer:48 V
Explanation:
Given
Three charged particle with charge



Electric Potential is given by

Distance of
from 



similarly 




Potential at
is

![V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]](https://tex.z-dn.net/?f=V_%7Bnet%7D%3Dk%5B%5Cfrac%7Bq_1%7D%7Bd_1%7D%2B%5Cfrac%7Bq_2%7D%7Bd_2%7D%2B%5Cfrac%7Bq_3%7D%7Bd_3%7D%5D)
![V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}](https://tex.z-dn.net/?f=V_%7Bnet%7D%3D9%5Ctimes%2010%5E9%5B%5Cfrac%7B50%7D%7B10%7D-%5Cfrac%7B80%7D%7B12%7D%2B%5Cfrac%7B70%7D%7B10%7D%5D%5Ctimes%2010%5E%7B-9%7D)


<span>The diver is heading downwards at 12 m/s
Ignoring air resistance, the formula for the distance under constant acceleration is
d = VT - 0.5AT^2
where
V = initial velocity
T = time
A = acceleration (9.8 m/s^2 on Earth)
In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m)
So let's substitute the known values and solve for T
d = VT - 0.5AT^2
-7 = 2.5T - 0.5*9.8T^2
-7 = 2.5T - 4.9T^2
0 = 2.5T - 4.9T^2 + 7
We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164.
Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So
V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s
V = 2.5 m/s - 14.47706141 m/s
V = -11.97706141 m/s
So the diver is going down at a velocity of 11.98 m/s
Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point.
V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s)
V = 2.5 m/s - (-9.477061409 m/s)
V = 2.5 m/s + 9.477061409 m/s
V = 11.97706141 m/s
And you get the exact same velocity, except it's the opposite sign.
In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
A heat pump is a device that is capable of transferring heat energy from a source of heat to what is known as the heat sink. It also moves thermal energy in the opposite direction of a spontaneous heat transfer through heat absorption from a cold space and releasing it to a warmer space.
When a heat pump is being utilized for heating, it employs the same principle with that of the refrigeration cycle used by an air conditioner or a refrigerator, but in the opposite direction since it releases heat into a conditioned space rather than the surrounding environment. Moreover, heat pump resembles much as refrigeration since it has the same components with the latter except for the presence of a reverse valve.
Yes the plot dose make it with out baking out