G = 9.81 m/sec^2) g = 9.81
<span>Solving for velocity : </span>
<span> = 2gh </span>
<span>v = </span>
<span>v = (2 x 9.81 x 10)^1/2 </span>
<span>v = 196.2 m/sec (answer)</span>
<span>Diamond slowdown light more than Quartz , because diamonds have a greater index of refraction. Light will bend when its move from one medium to another. The Index of Refraction of Material is found by comparing the speed of light in their respective mediums.</span>
Answer
Pressure, P = 1 atm
air density, ρ = 1.3 kg/m³
a) height of the atmosphere when the density is constant
Pressure at sea level = 1 atm = 101300 Pa
we know
P = ρ g h
h = 7951.33 m
height of the atmosphere will be equal to 7951.33 m
b) when air density decreased linearly to zero.
at x = 0 air density = 0
at x= h ρ_l = ρ_sl
assuming density is zero at x - distance
now, Pressure at depth x
integrating both side
now,
h = 15902.67 m
height of the atmosphere is equal to 15902.67 m.
Answer:
A 75.1 N and a direction of 152° to the vertical.
B 85.0 N at 0° to the vertical.
Explanation:
A) The interaction partner of this normal force has what magnitude and direction?
The interaction partner of this normal force is the component of the weight of the crate perpendicular to the ramp. <u>It has a magnitude of 85cos28° = 75.1 N and a direction of 180° - 28° = 152° to the vertical(since it is directed downwards perpendicular to the ramp).</u>
B) The normal and frictional forces are perpendicular components of the contact force exerted on the crate by the ramp. What is the magnitude and direction of the contact force?
Since this force has to balance the weight of the crate, its magnitude is 85.0 N. Its direction has to be vertically opposite to that of the weight.
Since the weight is 180° to the vertical (since it is directed downwards), this force is 0° to the vertical.
<u>So, this force has a magnitude of 85.0 N and a direction of 0° to the vertical.</u>