<h3>Answer : </h3><h3 /><h3>A ) The larger gear can be moved by applying a relatively small force on the smaller gear.</h3>
<h3>B )
The force applied on the smaller gear is transmitted without any loss to the larger gear .</h3><h3 /><h3>
C ) the direction of motion can be changed without changing the direction of the applied force .</h3>
D ) the system would continue to move without any further, after and initial force has set in motion.
Answer:
Explanation:
Work done = ∫Fdx
= ∫(cx-3.00x²) dx
[ c x² / 2 - 3 x³ / 3 ]₀²
= change in kinetic energy
= 11-20
= - 9 J
[ c x² / 2 - x³ ]₀² = - 9
c x 2² / 2 - 2³ = -9
2c - 8 = -9
2c = -1
c = - 1/2
Answer:
The sun looks bigger than other stars because it is closer to the Earth, distance makes it look larger
Answer:
α = 395 rad/s²
Explanation:
Main features of uniformly accelerated circular motion
A body performs a uniformly accelerated circular motion when its trajectory is a circle and its angular acceleration is constant (α = cte). In it the velocity vector is tangent at each point to the trajectory and, in addition, its magnitude varies uniformly.
There is tangential acceleration (at) and is constant.
at = α*R Formula (1)
where
α is the angular acceleration
R is the radius of the circular path
There is normal or centripetal acceleration that determines the change in direction of the velocity vector.
Data
R = 0.0600 m :blade radius
at = 23.7 m/s² : tangential acceleration of the blades
Angular acceleration of the blades (α)
We replace data in the formula (1)
at = α*R
23.7 = α*(0.06)
α = (23.7) / (0.06)
α = 395 rad/s²
You are correct...amplitude will be the answer