Answer:
Assuming there is no heat loss to the surrounding.
Heat lost by iron equals heat gained by water.
0.2(450)(50-x)=0.2(4200)(x-30)
x=31.94 °C
Explanation:
Answer:
108.37°C
Explanation:
P₁ = Initial pressure = 101 kPa
V₁ = Initial volume = 530 m³
T₁ = Initial temperature = 10°C = 10+273.15 =283.15 K
P₂ = Final pressure = 101 kPa (because it is open to atmosphere)
V₂ = Final volume = 530 m³
P₁V₁ = n₁RT₁
⇒101×530 = n₁RT₁
⇒53530 J = n₁RT₁
P₂V₂ = n₂RT₂
⇒53530 J = n₂RT₂

Dividing the first two equations we get

∴Temperature must the air in the balloon be warmed before the balloon will lift off is 381.25-273.15 = 108.37°C
Crushing pressure. Human bodies are used to air pressure. The air pressure in our lungs, ears and stomachs is the same as the air pressure outside of our bodies, which ensures that we don't get crushed. Our bodies are also flexible enough to cope when the internal and external pressures aren't exactly the same.
Answer:
0.012-m
Explanation:
∆L = α × Lo × (T-To)
α is the coefficient of linear expansion = 12 × 10-6 K-1
Lo = Initial length = 25-m
∆L = Change in length
(T-To) = 40 K
∆L = 12 × 10-6 × 25 × 40
∆L = 0.012-m
The concepts required to solve this problem are those related to the conservation of the angular momentum and the moment of inertia of the disk. We will begin by calculating the moment of inertia of the disc, then the moment of inertia of the disc after the two two blocks hits and sticks to the edges of the turn table. In the end we will apply the conservation theorem.
The radius is given as,

When a block falls from above and sticks to the turn table, the moment inertia of the turntable increases.
Since two blocks are stick to the turn table, the total final moment of inertia of the turntable is the sum moment of inertias of individual turntable, and two blocks.



The moment of inertia of each block is

Total moment of inertia of two block is

The final moment of inertia of the turn table is




From the conservation of the angular momentum, the initial angular momentum of the system is equal to final angular momentum of the system,
Rearrange the equation we have that




The magnitude of the turntable's angular velocity is 66.67rpm