1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
3 years ago
10

A subway train is traveling at 22.2 m/s when it approaches a slower train 50m ahead traveling in the same direction at 6.94 m/s.

If the faster train begins decelerating at 2.1 m/s 2 while the slower train continues at constant speed, how soon and at what relative speed will they collide?
Physics
1 answer:
Amiraneli [1.4K]3 years ago
4 0

Answer:

Time that they collide = 4.99s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Explanation:

We will use the equations of motion to obtain the solution required

At time t = 0

speed of first train = 22.2 m/s

Initial space between the two trains = 50 m

Speed of second train = 6.94 m/s

For the first car, distance covered by the first train = y

y = distance covered between the beginning of the deceleration and the point where the the two trains hit one another.

u = initial velocity = 22.2 m/s

t = time taken for all this to happen

a = deceleration = - 2.1 m/s²

y = ut + (1/2)at²

y = 22.2t - 1.05t² (eqn 1)

For the second train,

At t = 0, y = 50 m

Let the new distance moved by the second train before collision = (y - 50)

u = initial velocity = 6.94 m/s

t = time taken = t

a = acceleration of the second train = 0 m/s² (constant velocity)

(y - 50) = ut + (1/2)at²

y - 50 = 6.94t

y = 6.94t + 50 (eqn 2)

substituting for y in eqn 2 using the expression obtained in eqn 1

y = 22.2t - 1.05t²

y = 6.94t + 50

22.2t - 1.05t² = 6.94t + 50

1.05t² - 15.26t + 50 = 0

Solving this quadratic equation

t = 4.99 s or 9.54 s

The position of the two trains are the same at those two times, but the first time is when they hit each other.

t = 4.99 s

At 4.99 s, the the velocity of the first train

v = u + at

v = 22.2 + (-2.1×4.99) = 11.721 m/s in the same direction as the second train.

Relative velocity at this point will be

= 11.721 - 6.94 = 4.781 m/s

Relative speed of the trains when they collide: The relative speed of The first train relative to the second, slower train at collision = 4.781 m/s

Hope this Helps!!!

You might be interested in
On both sides.
goldenfox [79]

Answer:

please put pic of the questions

3 0
2 years ago
An object is moving in a straight line along the y axis. As a function of time, its position is given by the equation y=3.0+4.8x
romanna [79]

Answer:

Explanation:

<u>Instant Velocity and Acceleration </u>

Give the position of an object as a function of time y(x), the instant velocity can be obtained by

v(x)=y'(x)

Where y'(x) is the first derivative of y respect to time x. The instant acceleration is given by

a(x)=v'(x)=y''(x)

We are given the function for y

y(x)=3.0+4.8x +6.4x^2

Note we have changed the last term to be quadratic, so the question has more sense.

The velocity is

v(x)=y'(x)=4.8+12.8x

And the acceleration is a(x)=v'(x)=12.8

5 0
3 years ago
SI unit for electrical current
Mashcka [7]
I believe it is called an ampere.
5 0
3 years ago
A descending elevator of mass 1,000 kg is uniformly decelerated to rest over a distance of 8 m by a cable in which the tension i
Stolb23 [73]

The speed  V_{i} of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.

We are given that-

the mass of the elevator (m) = 1000 kg ;

the distance the elevator decelerated to be y = 8m ;

the tension is T = 11000 N;

let us determine the acceleration 'a' by using Newton's second law of motion.

∑Fy = ma

W - T = ma

(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a

9800 - 11000 = 1000

a = - 1.2 m/s²

Using the equation of kinematics to determine the initial velocity.

V_{f} ² = V_{i}² + 2ay

V_{i} = √ ( 2 x 1.2m/s² x 8 m )

V_{i} = √19.2 m²/s²

V_{i} = 4.38 m/s   ≈ 4 m/s

Hence, the initial velocity of the elevator is 4m/s.

Read more about the Equation of kinematics:

brainly.com/question/12351668

#SPJ4

8 0
1 year ago
True or false, russian twists focus to strengthen the latissimus dorsi
Oliga [24]
The answer is true hope that helped!!
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is friction and how does it affect objects in motion?
    8·2 answers
  • In Iran, Uranium is being enriched using centrifuges. In the 1940’s and 1950’s USA Uranium was enriched using mass spectrometry.
    11·1 answer
  • A ray of light contains two colors: red with wavelength of 660 nm and blue with wavelength 470 nm. The ray passes through two na
    11·1 answer
  • Dave is moving 3 m/s when he crashes his bike into a wall, which stops him in 0.6 seconds. If Dave and his bike have a mass of 9
    10·1 answer
  • Practice Exercises Name: : Billy-Joe stands on the Talahatchee Bridge kicking stones into the water below a) If Billy-Joe kicks
    13·1 answer
  • The table below shows two types of electromagnetic waves and three random applications of electromagnetic waves.
    14·1 answer
  • A bird lands on a bird feeder which is connected to a spring. The mass of the bird is exactly the same as the mass of the bird f
    11·1 answer
  • Please help I will fail
    5·1 answer
  • When you see a quantity like 20 m/s N, how do you know that it's a vector quantity and not a scalar quantity?
    15·1 answer
  • Which statement belongs to daltons atomic theory
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!