Answer:
B.convection currents in the mantle
Explanation:
Answer:
an air mass is a volume of air defined by its temperature and water vapor content. Air masses cover many hundreds or thousands of miles, and adapt to the characteristics of the surface below them. They are classified according to latitude and their continental or maritime source regions. Colder air masses are termed polar or arctic, while warmer air masses are deemed tropical. Continental and superior air masses are dry while maritime and monsoon air masses are moist. Weather fronts separate air masses with different density (temperature and/or moisture) characteristics. Once an air mass moves away from its source region, underlying vegetation and water bodies can quickly modify its character.When winds move air masses, they carry their weather conditions (heat or cold, dry or moist) from the source region to a new region. When the air mass reaches a new region, it might clash with another air mass that has a different temperature and humidity. This can create a severe storm.
Air masses can affect the weather because of different air masses that are different in temperature, density, and moisture. When two different air masses meet a front forms. This is one way air masses effect our weather.
The speed of light to be slightly less in atmosphere then in vacuum because of absorption and re-emission of light by the atmospheric molecules occurred when light travels through a material
<u>Explanation:</u>
When light passes through atmosphere, it interacts or transmits through the transparent molecules in atmosphere. In this process of transmission through atmosphere, the light will be getting absorbed by them and some will get re-emitted or refracted depending upon wavelength.
But in vacuum the absence of any kind of particles will lead to no interaction and no energy loss, thus the speed of the light will be same in vacuum while due to interactions with molecules of atmosphere, there speed will be slightly less compared to in vacuum.
Answer:
R = 2Ω
Explanation:
Potential difference (V) = current (I) * Resistance (R)
V = IR
I = 2.0A
V = 10v
R = ?
V = IR
R = V / I
R = 10 / 2
R = 2Ω
The resistance across the wire is 2Ω