Answer:
This really depends on the size of the ball and if the ball is going straight down or at a diagonal angle
Explanation:
Answer:
The intensity level in the room is 63 dB
Explanation:
To calculate the intensity of sound in the room, we use the equation of definition of decibels
β = 10 log (I / Io) (1)
With “I” the sound intensity and “Io” the threshold intensity 1.0 10⁻⁻¹² W/m²
To calculate the intensity we will use the initial data and remember the power of the emitted sound is constant, in addition that the sound propagates in three-dimensional form or on a spherical surface
I = P/A ⇒ P = I A
The area of a sphere is 4 π r², where I can calculate of 1
β/10 = log (I/Io)
I / Io = 
I = Io 
I = 1 10⁻¹² 10⁽¹⁰⁰/¹⁰⁾ = 1 10⁻¹² 10¹⁰
I = 1.0 10⁻² W
With this we can calculate the intensity for a distance of 20 m
I = 1.0 10⁻² / ( 4π 20²)
I = 2.0 10⁻⁶ W/m²
We have already found the intensity at the point of interest, so we can calculate the intensity in decibels at this point with equation 1
β = 10 log(2.0 10⁻⁶ / 1.0 10⁻¹²)
β = 10 log ( 2 10⁶) = 10 6.3
β = 63 dB
The intensity level in the room is 63 dB
Answer:
The answer is 24
Explanation:
Its made up of 6 carbon atoms
6 oxygen atoms
12 hydrogen atoms
The power required to force the current of 4.13 A to flow through the conductor is 1927.43 watts
<h3>What is power? </h3>
This is defined as the rate in which energy is consumed. Electrical power is expressed mathematically as:
Power (P) = square current (I²)× resistancet (R)
P = I²R
<h3>How to determine the power</h3>
- Current (I) = 4.13 A
- Resistance (R) = 113 ohms
- Power (P) =?
P = I²R
P = 4.13² × 113
P = 1927.43 watts
Thus, the power required is 1927.43 watts
Learn more about electrical power:
brainly.com/question/64224
#SPJ1