Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
In hot water the molecules move faster versus In cold water they move slower (hope that helps)
Answer:
Velocity is vector quantity. So it needs <em>direction</em> in addoition to <em>speed</em>.
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion.
A ground state electron configuration follows the Aufbau Principle that states that electrons should be filled up in orbitals in increasing energy. In the given sequences, the right configuration is
<span>1s2 2s2 2p6 3s2 3p6 4s2 3d8.
2) the possible confirmation that follows Aufbau's principle is
D. </span><span>-[Kr] 5s24d105p3</span>