Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that ball will reach at maximum height at
t = 3 s
now we will have

now we have


Now maximum height above ground is given as



Part b)
Height of the fence is given as



Part c)
As we know that its horizontal distance moved by the ball in 5.5 s is given as



now total time of flight is given as

so range is given as



so the distance from the fence is given as


<span>Answer: Force = 81.6 N
Explanation:
According to Newton's Second law:
F = ma --- (1)
Where F = Force = ?
m = Mass = 68 kg
a = Acceleration = 1.2 m/s^2
Plug in the values in (1):
(1) => F = 68 * 1.2
F = 81.6 N (The force needed to accelerate the skier at a rate of 1.2 m/s^2)</span>
Answer:
I got you.. i'm in middle school and had that same question.
Explanation:
Refer to the diagram shown below.
The vertical distance traveled is
s = 25 m
The initial vertical launch velocity is zero.
Therefore
s = (1/2)*g*t²
where g = 9.8 m/s²
t = the time of flight, s
That is,
0.5*9.8*t² = 25
t² = 25/4.9 = 5.102
t = 2.26 s
Answer: 2.26 s
Answer:
The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.
Explanation:
Force is any cause capable of modifying the state of motion or rest of a body or of producing a deformation in it. Any force can be decomposed into two vectors, so that the sum of both vectors matches the vector before decomposing. The decomposition of a force into its components can be done in any direction.
Taking into account the simple trigonometric relations, such as sine, cosine and tangent, the value of their components and the value of the angle of application, then the parallel and perpendicular components will be:
- Fparallel = F*sinα =300 N*sin 67.8° =300 N*0.926⇒ Fparallel =277.8 N
- Fperpendicular = F*cosα = 300 N*cos 67.8° = 300 N*0.378 ⇒ Fperpendicular= 113.4 N
<u><em>The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.</em></u>
Answer:
15.07 ksi
Explanation:
Given that:
Pitch (P) = 5 teeth/in
Pressure angle (
) = 20°
Pinion speed (
) = 2000 rev/min
Power (H) = 30 hp
Teeth on gear (
) = 50
Teeth on pinion (
) = 20
Face width (F) = 1 in
Let us first determine the diameter (d) of the pinion.
Diameter (d) =
=
= 4 in
From the values of Lewis Form Factor Y for (
) = 20 ; at 20°
Y = 0.321
To find the velocity (V); we use the formula:


V = 2094.40 ft/min
For cut or milled profile; the velocity factor
can be determined as follows:


= 2.0472
However, there is need to get the value of the tangential load
, in order to achieve that, we have the following expression




Finally, the bending stress is calculated via the formula:



15.07 ksi
∴ The estimate of the bending stress = 15.07 ksi