Wood is typically an insulator(resists flow of electricity though it)
However, wet wood can be a conductor so really it depends
Answer:
k is the energy of motion it increase with four of load you carry
Answer:
mass
Explanation:
This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.
pls make as brainlieast
Well, first off, Newtons second law of motion <span>deals with the motion of accelerating and decelerating objects.
W</span>e already know that from everyday life examples such as simply pushing a car that if 2 people push a car on a flat road it will accelerate faster than if one person was pushing it... Therefore, there is a relationship between the size of the force and the acceleration.
Now onto the third law of motion. First of all, what is the third law of motion? Well, a force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! According to Newtons third law, whenever one object, and another object interact with each other, they exert forces upon each other. "For every action, there is an equal and opposite reaction." The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. So, how is this important to everyday life you may ask?
<span>Well, the action-reaction force pairs are found everywhere in your body.
For example, right now as I am typing, my tendons are exerting forces on bones, and those bones exert reaction forces on the tendons, as muscles contract, pulling my fingers on the keys. I press on those keys, and they press back on my fingers. See? Since i'm pressing on the keys, the press back on me. Its opposite from each other, as stated in the quite above. "</span><span>For every action, there is an equal and opposite reaction." </span>
Incomplete question.The complete one is here
A runner taking part in the 200m dash must run around the end of a track that has a circular arc with a radius curvature of 30m. The runner starts the race at a constant speed. If she completes the 200m dash in 23s and runs at constant speed throughout the race, what is her centripetal acceleration as she runs the curved portion of the track?
Answer:

Explanation:
Given data

Required
Centripetal acceleration
Solution
According to the motions equation the velocity given by:

The centripetal acceleration is given by:
