Answer:
Mole fraction of solute is 0.0462
Explanation:
To solve this we use the colligative property of lowering vapor pressure.
First of all, we search for vapor pressure of pure water at 25°C = 23.8 Torr
Now, we convert the Torr to mmHg. Ratio is 1:1, so 23.8 Torr is 23.8 mmHg.
Formula for lowering vapor pressure is:
ΔP = P° . Xm
Where ΔP = P' (Vapor pressure of solution) - P° (Vapor pressure of pure solvent)
Xm = mole fraction
24.9 mmHg - 23.8 mmHg = 23mmHg . Xm
Xm = (24.9 mmHg - 23.8 mmHg) / 23mmHg
Xm = 0.0462
Partial pressure=mole fraction×Pt
x=0.044÷44(maolarmass of CO2)×Pt
x=0.044÷(44)2×Pt
x=5×10^-4×Pt
x=5×10^-4×Pt
where Pt:1atm=760mmHg
xatm=750mmHg
750×1÷760=0.99
now;5×10^-4×099=4.95×10^-4.
Pt=4.95×10^-4
Answer:
0.88g
Explanation:
The reaction equation:
2NaI + Cl₂ → 2NaCl + I₂
Given parameters:
Mass of Sodium iodide = 2.29g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we work from the known to the unknown.
First find the number of NaI from the mass given;
Number of moles =
Molar mass of NaI = 23 + 126.9 = 149.9g/mol
Now insert the parameters and solve;
Number of moles = = 0.015mol
So;
From the balanced reaction equation;
2 moles of NaI produced 2 moles of NaCl
0.015mole of NaI will produce 0.015mole of NaCl
Therefore;
Mass = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Now;
Mass of NaCl = 0.015 x 58.5 = 0.88g
The number of particles in 46g of Sodium (Na) atoms are 2.00088735004 mol
In physics, the law of conservation of energy states that the total energy of an iolated system remains constant, it is said to be conserved over time. energy can neither be destroyed rather it transforms from one form to another.