Answer:
a) For P: 
For Q: 
b) For P:

for Q:

c) As the distance from the axis increases then speed increases too.
Explanation:
a) Assuming constant angular acceleration we can find the angular speed of the wheel dividing the angular displacement θ between time of rotation:

One rotation is 360 degrees or 2π radians, so θ=2π

Angular acceleration is at every point on the wheel, but speed (tangential speed) is different and depends on the position (R) respect the rotation axis, the equation that relates angular speed and speed is:

for P:

for Q:

b) Centripetal acceleration is:

for P:

for Q:

c) As seen on a) speed and distance from axis is
because ω is constant the if R increases then v increases too.
Answer:
There are 6 electrons in the outermost shell.
Explanation:
Sulphur is a non-mettalic element which is in the period 3 and group .6on the periodic table. It has an atomic number of 16 and a Mass number of 32. Atomic number tells you the number of electrons in an electrically neutral atom. It has the electronic configuration of 1s2 2s2 2p6 3s2 3p4.
The orbitals have a formula 2n^2 where n = 0, 1, 2, 3 etc.
In the shells, n = 1 so there are 2 electrons. For n = 2, 2*(2)^2 = 8 electrons. So, 16 - (8 + 2) = 6 electrons in the 3 shell (outermost shell)
Therefore from the electronic confriguration above, there are 6 electrons in the outermost shell.
Answer:
λ = 396.7 nm
Explanation:
For this exercise we use the diffraction ratio of a grating
d sin θ = m λ
in general the networks works in the first order m = 1
we can use trigonometry, remembering that in diffraction experiments the angles are small
tan θ = y / L
tan θ =
= sin θ
sin θ = y / L
we substitute
= m λ
with the initial data we look for the distance between the lines
d =
d = 1 656 10⁻⁹ 1.00 / 0.600
d = 1.09 10⁻⁶ m
for the unknown lamp we look for the wavelength
λ = d y / L m
λ = 1.09 10⁻⁶ 0.364 / 1.00 1
λ = 3.9676 10⁻⁷ m
λ = 3.967 10⁻⁷ m
we reduce nm
λ = 396.7 nm
Answer:
The time is 0.5 sec.
Explanation:
Given that,
Voltage V= 12.00 V
Inductance L= 1.20 H
Current = 3.00 A
Increases rate = 8.00 A
We need to calculate change in current

We need to calculate the time interval
Using formula of inductor


Where,
= change in current
V = voltage
L = inductance
Put the value into the formula


Hence, The time is 0.5 sec.
Answer:
Period of brightness variation and luminosity.
Explanation:
The Cepheid variables are used as distance indicators. This requires estimation of periods and (usually) intensity-mean magnitudes in order to establish a period—apparent luminosity relation. It is particularly important for the techniques employed to be as accurate and efficient as possible.