Answer:
1.11 m/s
Explanation:
The motion of the boat is an example of accelerated motion, since the velocity is not constant. However, we don't need to find the acceleration, because we are only interested in the average velocity of the boat, which is given by:
where d is the total distance covered and t the time taken. In this problem, the boat covered a distance of d = 20 m and it takes t = 18 s, therefore the average velocity is
Complete Question:
Gauss's law:
Group of answer choices
A. can always be used to calculate the electric field.
B. relates the electric field throughout space to the charges distributed through that space.
C. only applies to point charges.
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
E. relates the surface charge density to the electric field.
Answer:
D. relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Answer:
= 85.7 ° C
Explanation:
For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state
Q₁ = m L
Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water
Q₁ = 2.00 10⁻³ 2.26 10⁶
Q1 = 4.52 10³ J
Now the heat of coffee in the cup, which does not change state is
Q coffee = M ( -)
Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat
Qc = - Q₁
M ce ( -) = - Q₁
The coffee dough left in the cup after evaporation is
M = 250 -2 = 248 g = 0.248 kg
-Ti = -Q1 / M
= Ti - Q1 / M
Since coffee is essentially water, let's use the specific heat of water,
= 4186 J / kg ºC
Let's calculate
= 90.0 - 4.52 103 / (0.248 4.186 103)
= 90- 4.35
= 85.65 ° C
= 85.7 ° C
Answer : The energy of one photon of hydrogen atom is,
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:
Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:
Now we have to calculate the energy.
where,
h = Planck's constant =
c = speed of light =
= wavelength =
Putting the values, in this formula, we get:
Therefore, the energy of one photon of hydrogen atom is,