Francium is the heaviest of the alkali metals, with an atomic mass of 223 grams.
Oxidation-Reduction Reactions Suggested Reading Thus the oxidation number for oxygen in calcium oxide is -2. ... In effect, each calcium atom loses two electrons to form Ca2+ ions, and each O atom in O2 gains two electrons to form O2- ions. The net result is a transfer of electrons from calcium to oxygen, so this reaction is an oxidation-reduction reaction.
+<u>O²</u><u>(</u><u>g</u><u>)</u><u>=</u><u>2</u><u>CaO</u><u>(</u><u>s</u><u>)</u>
Explanation:
we can conclude that in the reaction there is both reduction and oxidation.
Answer: <em>B) Demonstrate the importance of worker-employer cooperation.</em>
Explanation: Slow down or strike is a demenstration to the employer just how important the workers are to the corp and work place. Nothing can function or run properly without them.
<h2><em>If this is the best answer please mark brainilest. Hope this helps, have a great day!</em></h2>
Answer:
Conceptual energy modeling does not produce the same accurate results as energy modeling with building elements
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.