Potassium 23.5g/39.0983g/mol = 0.601mol
The Ratio of reactants is 2 to 1 so (0.601mol)/2 = 0.3005mol
Therefore 0.3005mol of F2 is needed to find liters use
formula V = nRT/P (V)Volume = 22.41L
(T)Temperature = 273K or 0.0 Celsius
(P)Pressure = 1.0atm
<span>(R)value is always .08206 with atm n = 0.3005moles
(273)(.08206)(0.3005)/1 = V V = 6.7319 Liters</span>
Answer:
The strength of a bond between two atoms increases as the number of electron pairs in the bond increases.
Explanation:
Moles of NaN3 at STP = volume of gas / 22.4 = 11.5/22.4 = 0.5mole. Massof NaN3 = moles of NaN3 x molecular weight = 0.5 x 65 = 32.5 grams.
Answer:
It increases when the concentration of reactants increases.
Explanation:
Increasing the concentration of reactants in a reaction increases the amount of reacting molecules or ions which would increase the rate of a chemical reaction. Reaction rate does depend on temperature. Increasing temperature also increases reaction rate because particles move faster with the increased kinetic energy to produce more collisions.
The hydrophobic effect is caused by nonpolar molecules clumping together. Large macromolecules can have hydrophobic sections, which will fold the molecule so they can be close to each other, away from water. Many amino acids in proteins are hydrophobic, helping the proteins obtain their complicated shapes. The hydrophobic effect extends to organisms, as many hydrophobic molecules on the surface of an organisms help them regulate the amount of water and nutrients in their systems.