14. a. Acidic
15. b. Weaker
16. d. Dilute and weak
Explanation:
14. Which type of the solution is one with the pH of 3?
Solution with pH from 1 to 7 are acidic, equal to 7 is neutral and from 7 to 14 basic. The solution with the pH equal to 3 is <u>acidic</u>.
15. The smaller the value of the base dissociation constant (Kb), the <u>weaker</u> the base.
The dissociation reaction of a base (B) is:
B + H₂O → BH⁺ + OH⁻
Kb is defined as:
Kb = ( [BH⁺] × [OH⁻] ) / ( [B] × [H₂O] )
The potency of the base depends on the concentration of the hydroxide ion [OH⁻], so if the Kb ratio is small it means that the concentration of hydroxide ion is smaller so the base will be <u>weaker</u>.
16. A 0.39 M solution of an acid that ionizes only slightly in solution would be termed <u>dilute and weak</u>.
The acid is weak because is only slightly ionizing in solution. The therm diluted is a little bit arbitrarily because we ask yourself "diluted in respect with what"? I would characterize the acid to be diluted at a concentration of 1 M and concentrated at a concentration of 10 M.
Learn more about:
pH
brainly.com/question/1402522
#learnwithBrainly
Answer:
The number of energy levels increases as you move down a group as the number of electrons increases. Each subsequent energy level is further from the nucleus than the last. Therefore, the atomic radius increases as the group and energy levels increase.
Explanation:
Dose this help? Tell me if it dose.
Answer: 0.0257 moles of
and 0.0257 moles of 
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

moles of 
The balanced reaction for dissociation will be:
According to stoichiometry:
1 mole of
gives 1 mole of
and 1 mole of 
Thus there will be 0.0257 moles of
and 0.0257 moles of 
The answer to both is D. Here's why:
For the first, whenever motion changes in a magnetic field, it causes electrons to move. Electricity, which is needed to power a lightbulb, is just a term for movement of these electrons. Electrons aren't created, they're always there in the wire. It's just that the permanent magnet gets them to move, which produces electricity.
For the second, it is very similar to the first. A magnet won't cause any electric current at rest, it always requires motion in order to produce an electric current. If you keep both of those in mind, it should help in the future. Hope this helps!