In middle school, the formula you'll use most often when you're
working with acceleration is . . .
Acceleration = (change in speed during some time) / (time for the change)
Answer:
The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.
Explanation:
BOOM NOW I WINNNNNNNNNNNn
The correct option is C) The angle between the vectors is 120°.
Why?
We can solve the problem and find the correct option using the Law of Cosine.
Let A and B, the given two sides and R the resultant (sum),
Then,

So, using the law of cosines, we have:

Hence, we have that the angle between the vectors is 120°. The correct option is C) The angle between the vectors is 120°
Have a nice day!
40 meters times 1 meter over 100 centimeters equals 0.4 meters. 1.3 meters + 40 centimeters =. 1.3 m + 0.4 m = 1.7 m. The answer is 1.7 meters
A :-) F = ma
Given - m = 95 kg
a = 2.2 m/s^2
Solution -
F = ma
F = 95 x 2.2
F = 209
.:. The force is 209 N