This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
The correct answer is option (C) the temperature of the shirt will increase because all wavelengths of light are absorbed by the shirt.
The relationship of heat and light
- Heat is a measure of the movement of particles in the body, the more particles move, the warmer the body becomes.
- When the body absorbs light radiation, its particles vibrate in accordance with the electromagnetic radiation's wavelengths, which causes an increase in the temperature with the increase in particle movement.
- The more wavelengths of radiation absorbed by an object, produces more heat.
Learn more about the Wavelength of light with the help of the given link:
brainly.com/question/13961990
#SPJ4
Answer:
v₀ₓ = 63.5 m/s
v₀y = 54.2 m/s
Explanation:
First we find the net launch velocity of projectile. For that purpose, we use the formula of kinetic energy:
K.E = (0.5)(mv₀²)
where,
K.E = initial kinetic energy of projectile = 1430 J
m = mass of projectile = 0.41 kg
v₀ = launch velocity of projectile = ?
Therefore,
1430 J = (0.5)(0.41)v₀²
v₀ = √(6975.6 m²/s²)
v₀ = 83.5 m/s
Now, we find the launching angle, by using formula for maximum height of projectile:
h = v₀² Sin²θ/2g
where,
h = height of projectile = 150 m
g = 9.8 m/s²
θ = launch angle
Therefore,
150 m = (83.5 m/s)²Sin²θ/(2)(9.8 m/s²)
Sin θ = √(0.4216)
θ = Sin⁻¹ (0.6493)
θ = 40.5°
Now, we find the components of launch velocity:
x- component = v₀ₓ = v₀Cosθ = (83.5 m/s) Cos(40.5°)
<u>v₀ₓ = 63.5 m/s</u>
y- component = v₀y = v₀Sinθ = (83.5 m/s) Sin(40.5°)
<u>v₀y = 54.2 m/s</u>
E) No. Ollie will shine for 30 Billion years but is only 10,000 LY from Earth.
F) No. Cosmo will shine for 3 Million years but is 10 Billion LY from Earth.
G) Yes. Ollie is only 10.000 LY away but will shine for 30 Billion years.
Ga) No. Stars such as Cosmo shine for 3 Million years.
Gb) If Cosmo was also 3 Million LY away we would see it now.