Answer:
B as distance increase force decrease, but it is not a linear relationship.
Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.
Answer:
3.6μF
Explanation:
The charge on the capacitor is defined by the formula
q = CV
because the charge will be conserved
q₁ = C₁V₂
q₂ = C₂V₂ where C₂ V₂ represent the charge on the newly connected capacitor and the voltage drop across the two capacitor will be the same
q = q₁ + q₂ = C₁V₂ + C₂V₂
CV = CV₂ + C₂V₂
CV - CV₂ = C₂V₂
C ( V - V₂) = C₂V₂
C ( V/ V₂ - V₂ /V₂) = C₂
C₂ = 0.9 ( 10 /2) - 1) = 0.9( 5 - 1) = 3.6μF
Since there is no diagram I can see to prove my answer, I must infer that a heat source should be applied to the solid substance and cause the atoms in the solid to spread further apart and become a different state, in which atoms will be able to freely move, gas.