1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
12

If the distance between the two objects is reduced in half, what will be the changed force of attraction between them?

Physics
1 answer:
NNADVOKAT [17]3 years ago
8 0
Will reduce 4 times.

F =  G \frac{m1* m2}{ d^{2} }
So called LUG (Law of Universal gravitation).
You might be interested in
What is amperage?
Shtirlitz [24]

question one b

question 2 i think a

3  d

4 c

5 not sure but wanting to say d

6  letter b

7 not sure

8 idk

9 i have no idea

3 0
3 years ago
A 4 kg textbook sits on a desk. It is pushed horizontally with a 50 N applied force against a 15 N frictional force.
GarryVolchara [31]

a) See free-body diagram in attachment

b) The book is stationary in the vertical direction

c) The net horizontal force is 35 N in the forward direction

d) The net force on the book is 35 N in the forward horizontal direction

e) The acceleration is 8.75 m/s^2 in the forward direction

Explanation:

a)

The free-body diagram of a body represents all the forces acting on the body using arrows, where the length of each arrow is proportional to the magnitude of the force and points in the same direction.

From the diagram of this book, we see there are 4 forces acting on the book:

- The applied force, F = 50 N, pushing forward in the horizontal direction

- The frictional force, F_f = 15 N, pulling backward in the horizontal direction (the frictional force always acts in the direction opposite to the motion)

- The weight of the book, W=mg, where m is the mass of the book and g=9.8 m/s^2 is the acceleration of gravity, acting downward. We can calculate its magnitude using the mass of the book, m = 4 kg:

W=(4)(9.8)=39.2 N

- The normal reaction exerted by the desk on the book, N, acting upward, and balancing the weight of the book

b)

The book is in equilibrium in the vertical direction, therefore there is no motion.

In fact, the magnitude of the normal reaction (N) exerted by the desk on the book is exactly equal to the weight of the book (W), so the equation of motion along the vertical direction is

N-W=ma

where a is the acceleration; however, since N = W, this becomes

a=0

And since the book is initially at rest on the desk, this means that there is no motion.

c)

We said there are two forces acting in the horizontal direction:

- The applied force, F = 50 N, forward

- The frictional force, F_f = 15 N, backward

Since they act along the same line, we can calculate their resultant as

\sum F = F - F_f = 50 - 15 = 35 N

and therefore the net force is 35 N in the forward direction.

d)

The net force is obtained as the resultant  of the net forces in the horizontal and vertical direction. However, we have:

- The net force in the horizontal direction is 35 N

- The net force in the vertical direction is zero, because the weight is balanced by the normal reaction

Therefore, this means that the total net force acting on the book is just the net force acting on the horizontal direction, so 35 N forward.

e)

The acceleration of the book can be calculated by using Newton's second law:

\sum F = ma

where

\sum F is the net force

m is the mass

a is the acceleration

Here we have:

\sum F = 35 N (in the forward direction)

m = 4 kg

Therefore, the acceleration is

a=\frac{\sum F}{m}=\frac{35}{4}=8.75 m/s^2 (forward)

Learn more about forces, weight and Newton's second law:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
Water flows through a cast steel pipe (k = 50 W m.K, ε = 0.8) with an outer diameter of 104mm and 2 mm wall thickness. Calculate
masha68 [24]

Answer:

The heat loss per unit length is   \frac{Q}{L}   = 2981 W/m

Explanation:

From the question we are told that

     The outer diameter of the pipe is d = 104mm = \frac{104}{1000} = 0.104 m

     The thickness is  D = 2mm = \frac{2}{1000} = 0.002m  

      The temperature  of water is  T = 90^oC = 90 + 273 = 363K  

      The outside air temperature is T_a = -10^oC = -10 +273 = 263K

        The water side heat transfer coefficient is z_1 = 300 W/ m^2 \cdot K

       The  heat transfer coefficient is  z_2 = 20 W/m^2 \cdot K

The heat lost per unit length is mathematically represented as

           \frac{Q}{L}   = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1}  +  \frac{ln [\frac{d}{D} ]}{z_2}}

Substituting values

         \frac{Q}{L}   = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300}  +  \frac{ln [\frac{0.104}{0.002} ]}{20}}

           \frac{Q}{L}   = \frac{628}{0.2107}

           \frac{Q}{L}   = 2981 W/m

6 0
3 years ago
A fullback preparing to carry the football starts from rest and accelerates straight ahead. He is handed the ball just before he
RideAnS [48]

Answer:

x=4.06m

Explanation:

A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.

When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf=Vo+a.t  (1)\\\\

{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\

X=Xo+ VoT+0.5at^{2}    (3)\\

Where

Vf = final speed

Vo = Initial speed

T = time

A = acceleration

X = displacement

In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve

for this problem

Vf=7.6m/s

t=1.07

Vo=0

we can use the ecuation number one to find the acceleration

a=(Vf-Vo)/t

a=(7.6-0)/1.07=7.1m/s^2

then we can use the ecuation number 2 to find the distance

{Vf^{2}-Vo^2}/{2.a} =X

(7.6^2-0^2)/(2x7.1)=4.06m

4 0
3 years ago
A wave travels at a constant speed.How does the frequency change if the wavelength is reduced by a factor of 3 The frequency dec
nata0808 [166]

Answer:

The frequency increases by a factor of 3.

Explanation:

The relation between speed, wavelength and frequency of a wave is given by :

v=f\lambda

or

f\propto \dfrac{1}{\lambda}

A wave travels at a constant speed. If the wavelength is reduced by a factor of 3, it would mean that the frequency increases by a factor of 3 because there is an inverse relationship between wavelength and frequency.

8 0
2 years ago
Other questions:
  • La frecuencia de una onda es 60Hz y su velocidad, 30 m/s. Calcula su longitud de onda
    9·1 answer
  • The refractive index of water is greater than that of air but is less than that of glass or a diamond. Under which condition can
    10·1 answer
  • Which of the following occurs with both a cold front and a mountain breeze?
    5·1 answer
  • How is the DNA in humans similar and different to DNA in other organisms ?
    12·1 answer
  • *Materials that regulate the flow of current through them *
    5·1 answer
  • What does Charles law state?​
    10·1 answer
  • . En 1/2 hora, un ciclista recorrió 20 kilómetros. ¿Cuál fue el promedio de velocidad del ciclista? a. 10 km / h b. 60 km c. 40
    6·1 answer
  • How are theories and laws connected ​
    8·2 answers
  • An ocean liner leaves New York City and travels 18.0o north of east for 155 km. How far east and how far north has it gone? In o
    14·1 answer
  • Is India a rich country?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!