Answer:
15.106 N
Explanation:
From the given information,
The weight of the bucket can be calculated as:

The mass of the water accumulated in the bucket after 3.20s is:


To determine the weight of the water accumulated in the bucket, we have:



For the speed of the water before hitting the bucket; we have:


v = 8.4 m/s
Now, the force required to stop the water later when it already hit the bucket is:


F = 1.68 N
Finally, the reading scale is:
= 7.154 N + 6.272 N + 1.68 N
= 15.106 N
The elasticity of a polymer is primarily due to the structure of the molecule and the cross-linking between strands. Hydrogen bonding is a contributor to the shape of the molecule, but not a major player in terms of elasticity. We would have to answer "false".
<span>
</span>
Ok so here is the thing. It is necessary to introduce the atomic number Z into the following equation and the reason for that is that we are not working here with hydrogen (H). It will go like this:
<span>E=(2.18×10^-18 J)(Z^2 )|1/(ni^2 )-1/(nf^2 )| </span>
<span>E=(2.18×10^-18 J)(2^2 )|1/(6 ^2 )-1/(4 ^2 )|=3.02798×10^-19 J </span>
<span>After that we need to plug the E value calculated into the equation. Remember that the wavelength is always positive:</span>
<span>E=hc/λ 3.02798×10^-19 J=hc/λ λ=6.56×10^-7 m </span>
so 6.56×10^-7 m or better written 656 nm is in the visible spectrum
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years